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Abstract: - The details of a cell center finite volume depth-integrated free surface flow solver which solves 
two-dimensional advection and diffusion equation of suspended sediment in a coupled manner. The set of flow 
equations is shallow water equation which considers the effect of the bed topography variations.  The 
algorithm includes a parabolic algebraic eddy viscosity model for simulation of turbulent effects. The depth 
integrated equation mathematically describes the variation of the sediment concentration due to the deposition-
erosion phenomenon via its sink-source terms. In present algorithm, various coefficients for non-equilibrium 
adaptation length in the source-sink terms of clear water sediment transport formulation is tested and verified. 
A cell center finite volume formulation for unstructured triangular meshes is utilized with explicit time 
integration. In order to prevent numerical instabilities, proper artificial viscosity terms are added to the 
formulation, without degradation of accuracy. Validation of the suspended sediment module is accomplished 
through simulation of two test cases in straight channels. The first test case, presents the net sediment 
entrainment into the clear water from channel bed with zero sediment deposition. The second one describes 
the sediment deposition on the perforated channel bed with zero sediment entrainment. 
 
 
Key-Words: - Deposition-Erosion, 2D Advection-Difusion of Suspended Sediment, Free Surface Flow, Cell 
Center Finite Volume Method, Unstructured Triangular Mesh 
 
1   Introduction 
The transport of suspended sediment is an important 
area of research in fluvial hydraulics. Despite 
intensive research, both numerical and empirical, in 
the last few decades, the transport mechanisms 
remain far from a complete physical or analytical 
description. In the past few decades, 2D and 3D 
mathematical models for sediment transportation 
have been developed to predict river regime and 
riverbed deformation due to engineering projects 
[21,19,15,27,10]. 
One of the recently proposed mathematical models 
for sediment transport is the one developed based on 
analysis of performed by Jiang et al [6]. They tested 
their model for net entrainment of suspended load 
via two-phase modeling of suspended sediment 
distribution in free surface flows in a straight 

channel. In this model, the incorporation of the 
additional dispersion terms predict more accurate 
sediment concentration distribution along the water 
depth but the computational cost of employing their 
formulations is more than using well known Rouse 
model. However, results of their mathematical 
model in the vertical direction is similar to the 
classical convection–diffusion equation such as the 
Rouse model. 
In another effort, Chia et al, [7] proposed 2-D 
numerical model for net entrainment of suspended 
load in straight channel. They used the explicit finite 
analytic method to discretize the governing 
equations for water flow. In their study, the 
sediment transport equation is solved in an 
uncoupled manner. The equilibrium concentration 
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profile proposed by van Rijn through a simplified 
method was adopted in their work.  
Minh et al, [13] and Wu et al, [27] developed both 2D 
depth-average and 3D models which consider 
suspended and bed-load sediment transport and bed 
deformation for natural rivers. The partial 
differential equations for the mean flow, the 
turbulence model and the suspended-sediment 
concentration were solved with extended versions of 
the finite-volume codes in the 2D and 3D models. 
Both finite-volume codes used non-staggered 
curvilinear regular grids. Lin and Falconer [12] 
simulated similar test case using their 3D models.  
Zeng et al, [29] used a full 3D (non-hydrostatic) 
model for predicting vertical concentration 
distribution in straight channel with net entrainment 
and one with net deposition of suspended sediment. 
Their model solves Incompressible, Reynolds-
Averaged Navier-Stokes (RANS) equations in 
generalized curvilinear coordinates. 
Olsen [16] used a fully 3D non-hydrostatic model to 
predict the meandering of alluvial channels using a 
finite volume time-accurate solver that can employ 
unstructured grids. 
Singh et al, 2005 [24] used fractional step approach, 
also known as standard split approach (Sobey [18]) 
to determine longitudinal concentration profile in 
the case of net entrainment of suspended sediment. 
They used Leveque [9] algorithm for solving the 
advection part of the equations, which uses basic 
upwind method and proposed several correction 
terms to achieve better accuracy and stability. To 
solve for the diffusion part of the advection 
diffusion sediment transport equation, a semi-
implicit finite difference scheme was used in his 
model. 
This paper focuses on the validation of the 
suspended sediment transport module by using 
efficient of a 2D hydrostatic viscous flow solver and 
turbulence model. The motion of the suspended 
sediment in the system is described by the 
advection-diffusion equation. The governing 
equations for open channel flow and sediment 
transport simulations is developed and discretised 
with cell center finite volume method.  
 
2   Governing Equations 
Because many open channel flows are shallow water 
problems, the effect of vertical motions is usually of 
insignificant magnitude. The depth integrated two-
dimensional equations are generally accepted for 
studying the open channel hydraulics with 
reasonable accuracy and efficiency. The mass and 
momentum equations for depth-integrated two-

dimensional turbulent flows in a Cartesian 
coordinate system are:  
 
2.1. Flow Equations 
Theoretical bases of the SWE theory may be found 
in Liggett [11] and Chaudhry [2]. Cunge et al [4]. 
The dependent flow variables in such equations are 
the flow depth (h) and the x and y components of the 
unit discharge (hu and hv), related to the 
corresponding vertically averaged flow velocity 
components (u and v). 
The depth-integrated continuity and momentum 
equations of open-channel flow are 
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where t = time; x and y =horizontal Cartesian 
coordinates; h=flow depth; u and v=depth-averaged 
flow velocities in x and y directions; =bed 
elevation; g =gravitational acceleration;

bz

wρ =density 
of flow; , , , and =depth-averaged 
turbulent stresses; and =bed shear stresses 
that are determined by
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n=Manning’s roughness coefficient. The turbulent 
shear stresses are determined by the Boussinesq’s 
assumption 
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Where, υ  =kinematic viscosity of water; tυ  =eddy 
viscosity due to turbulence; and = turbulence  k

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007      191



energy, which is dropped from Eqs. (4) and (6) 
when the zero-equation turbulence models are used. 
Several turbulence models, including the depth-
averaged parabolic eddy viscosity model, the mixing 
length model, the standard k-« turbulence model 
(Rodi, [17]), have been innovated to determine the 
eddy viscosity tυ . In the present paper, only the 
depth-averaged parabolic model is used. In the 
depth-averaged parabolic model, the eddy viscosity 
is calculated by hUtt *υ α=

[
, in which = bed 

shear velocity 
*U

] 212 )V+2
* (UCU f= and tα  is the 

empirical coefficient between 0.3 and 1.0. 
 
 
2.2. Mass Balance for Suspended Sediment 
A two dimensional conservation form of the 
advection-diffusion equation for sediment transport 
can be written as: 
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where =depth-averaged concentration of the kKC th 
size class of suspended load 

KE and are erosion and deposition terms in 
upward and downward directions, respectively, and 
together known as source-sink term in the 
advection-diffusion equation. The source-sink term 
can be calculated as 

KD

)( * kkskKK CCwSDE −==− α ; 
and =settling velocity of sediment particles with 
k

skw
th size. 

yx kk , =diffusivity coefficient of sediment in x and y 
directions there are related to the turbulent eddy 
viscosity [23]. ttyx kk συ==  the turbulent eddy 
viscosity in the horizontal direction was assumed to 
be constant, tσ  is turbulent Prandtl-Schmidt number 
(value between 0.5 and 1.0). 
A formula for sediment concentration close to bed 
has to include only local bed parameters: sediment 
characteristics, bed shear stress and turbulence. Van 
Rijn [21] used dimensionless numbers of shear 
stress and particle diameter to correlate empirical 
coefficients against observations from the field and 
flume experiments. According to his method, the 
boundary condition at the bed for the convection-
diffusion equation can be specified by specifying an 
equilibrium sediment concentration close to bed. 
This approach is most used today and given 
as: 3.0
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*u = 
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= critical bed shear velocity for sediment motion 

given by Iwagaki [5]: 
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Where, a, b=constants; a=0.0226, b=1 for 
mmdm 065.0≤ ; a=0.000841, b=11/32 for 

mmdm 565.0065.0 ≤< ; a=0.0055, b=1 for 
mmd m 18.1565.0 ≤< ; a=0.01346, b=31/22 for 

mmdm 03.318.1 ≤< ; and a=0.00809, b=1 for 
. mmdm 03.3>

bδ  is a reference level set equal to 0.05h [14]. 
The transport of suspended particles in the vertical 
direction for 2D uniform open channel flows is 
expressed as [22]: 
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The fall velocity of the particles is denoted w, k is 
constant equal to 0.4, water depth is denoted h, y is 
the distance from the bed where the reference 
concentration )(* ac δ  is taken. 
β ′describes  the difference in the diffusion of a 
sediment particle from the diffusion of a fluid 
‘particle’. The coefficient β ′  is calculated as: 

( ) 11.021 *
2

* <<+=′ uwforuwβ  
W.H. Graf, M. Cellino [26] studied the experimental 
determination of the depth-averaged β ′  value, given 
by the ratio of the sediment, and the momentum, 
diffusion coefficients. Theirs study explained In the 
case of suspension flows over a movable bed 
without bed forms the measured β ′  values at 
capacity condition are smaller than unity,. 1<′β  
However, it also was shown that for flows over a 
movable bed with bed forms the β ′  values are 
larger than unity, 1>′β . 

 
 
2.2.1. Non-Equilibrium Adaptation Coefficient 
α  
The non-equilibrium adaptation coefficient α  is 
also assigned different values by different 
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investigators in their studies. Han et al. (1980) and 
Wu and Li (1992) used 1=α  for strong erosion 

25.0=α  for strong deposition and 5.0=α  for 
weak erosion and deposition. Yang (1998)[28] used 
a very small value 0.001 for α  Thus, the non-
equilibrium adaptation coefficient α  is also defined 
as a user-defined parameter in the model. In the 
model 006.0=α  was taken to achieve the best 
results. 
 
2.2.2. Near Bed Shear Velocity  
There are many ways in hydraulics to evaluate the 
shear velocity on the channel bed; the method that 
described in here is adopted in the current model. 
The method is to calculate shear the velocity 
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Using above that can account for roughness effects 
is used to simply equate  to . ′

*u *u
The Manning’s coefficient n is a local constant, 
which does not change with the flow condition, this 
approach is more efficient for practical applications 
because it is easier to lump the effects of bed form, 
channel geometry, sediment size and vegetation, etc. 
It is important that when loose bed and bank are 
considered (with or without sediment in motion), the 
roughness height  and Manning’s n used for 
calculating shear stress should include both bed 
material grain size and bed form roughness effects. 
These two parameters representing bed resistance to 
the flow can be converted from each other using 

Strickler’s formula: 
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The value of parameter A is in the neighborhood of 
20 depending on the sediment size, bed form, 
vegetation, and channel morphology. The effective 
roughness is computed as: 
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where λ  is bed form length, calculated as 
where  is the water depth and  is the bed 

form height, an example of a bed form predictor is 
given by van Rijn [21] estimating the bed form 
height, . Equation (11) developed based on 
uniform sediment size variations.  
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3   Numerical Formulation  
An important factor in applying numerical 
techniques is the question of grid generation. 
An unstructured triangular mesh has been deployed 
to cover the solution domain and enable arbitrary 
and complex geometries to be replicated. 
In a finite volume cell centre scheme, each triangle 
is considered as a control volume and the state 
variables are located at its centroid, so that the 
number of unknown vectors is the same as the 
number of cells or triangles. 
For prevention of interpolating from the same 
derivatives on the centroid nodes located on two 
sides of the edge in stretched cells, nearly non- 
stretched triangular meshes are used  
The shallow water equations written in conservation 
form. One of the more common forms of the 
equations encountered within the literature is written 
as: 
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The bottom slope in x and y directions is indicated 
with and , g is the gravitational acceleration. xS0 yS0

The finite volume method is based on writing the 
mathematical model equations in integral form over 
a control volume. In this work any triangular cell of 
the mesh is considered as a control volume is. 
The continuity, momentum and the advection-
diffusion equations are integrated over each 
triangular  control volume as, 
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By application of the Green's theorem to the 
integrated continuity and momentum equation the 
discrete form of the above equation is obtained as, 
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Where  is the known value of U at 
computational stage of n, while  is the value of 
U to be computed after computational time step

nU
1+nU

tΔ . 
Here  is the area of the control volume. The 
fluxes 

iΩ

E  and G  are the averaged values of the 
fluxes in x and y spatial derivatives which are 
computed as functions of . These fluxes are 
calculated in centre of boundary edges of the 
triangular shape control volumes by averaging of the 
fluxes computed at two cells adjacent to both sides 
of the desired edge (Figure 1). 

nU

  

  
Fig. 1. Weighted averaging  stencil,  

left: at centroids,  right: at nodal points  
 
However, for computation of the average fluxes E  
and G  at the boundary cells, it is assumed that there 
is another pseudo cell out side the computational 
domain (with the same values of E  and G  at its 
centre) adjacent to boundary cell. S is the known 
values of parameters in right hand of equation.2 and 
equal to zero for continuity equation. 
The integral discretisation of the flux through the 
whole surface boundary of the control volume is 
obtained by performing the summation, over the tree 
sides of each triangular cell. 
For the above mentioned numerical scheme, before 
proceeding to the next time-step, the imposed values 
at boundary nodes should be transferred to the cell 
centroid. Hence, all boundary values are updated 
using following weighted averaging, which its 
weighting coefficient is proportional to the distance 
of the neighboring nodes from the desired cell 
centroid (Figure 1). 
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Therefore, prior to this computation, it is necessary 
to update the flow variables ( ) 
at interior node of the boundary cell. This updating 
can be completed by application of following 
relation. 
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Here, iΩ  is the area of ith cell connected to the 
inside domain node of the boundary cell an average 
of the four vertices parameters, weighted with the 
distances between each vertices and the centroid, is 
used. 
At the first time step the values of variable 
( [ ]ThchvhuhU = ) are assumed at cell centroids 
as initial condition. However, at the end of 
computations, in order to prepare the result for the 
visualization packages, the computed values of flow 
variables should be transported from the cell 
centroids to the nodal points using the relation (19). 
 
3.1. Artificial Viscosity 
In order to stabilize the explicit solution procedure 
by damping out the numerical oscillations, a 
biharmonic artificial viscosity formulation can be 
added to above formulation. Considering the 

convictive fluxes as, ∑=
Δ⋅−Δ⋅=

3

1
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ii xGyEUC  

the fourth order artificial dissipation term, 
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 can be added to 

the aforementioned algebraic formulation. The 
scaling factor λ  is computed using the maximum 
central values of λ  at the centre of neighbor cells 
that connected to the centre of the i control volume. 

λ  is evaluated by ( )2222
yxC Δ+Δ+ˆ.ˆ. nUnU +=λ , 

where hgC =  wit g is the gravity acceleration. 
Here,U  is average central computed velocity at two 
neighbor cells that are common in edge for example 
edge a-b in Fig 1 and  is normal vectors at 
boundary edges of control volume Ω , respectively 
result in 

n̂

xvyunU Δ−Δ=ˆ. . Depending on the sizes of 
grid spacing, the coefficient of the artificial 
dissipation term, ε  should be tuned to the minimum 
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required value ( 1 256/3256/ ≤ ≤ε ) for the applied 
mesh. 
The algorithm for computation of artificial 
dissipation term is adopted for the unstructured 
meshes. Here, the Laplacian operator at every cell 

centers i, , is computed using 

the variables W at two centre of all cells that are 
neighbor to cell’s i. The maximum number of 
neighbor cells are tree and for boundary cells 
assumed another cell is available in other hand of 
boundary line and have same value of W according 
to boundary cell. The revised formula, which 
preserves the accuracy of the numerical solution, is 
written in the following form (Jameson 1981). 
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For reducing computational efforts, the biharmonic 
operator can computed in some certain 
computational stages, but its value added to the 
discretized formulation in all computational steps.  
 
3.2. Time Stepping 
For every control volume,  in computational 
domain, the time marching limit is specified as: 

Ω

λ
Ω

=Δ )(CFLt                                                       (21) 

Where, parameterλ  represents the maximum central 
values of Eigen values of Jacobin matrix at the total 
centre of neighbour cells that connected to the centre 
of the i control volume and Ω  is the control 
volume’s area. The Courant-Fredrish-Levy number 
(coefficient ) is evaluated by the stability 
condition for explicit computation procedure. Since 
we are dealing with unstructured meshes, the size of 
control volumes varies over the computational 
domain. Therefore, every control volume has its 
own time step, . 

CFL

tΔ
Kleb, Batina and Williams [8] presented a local time 
stepping technique for the Euler and Navier-Stokes 
equations on unstructured meshes. 
The method was demonstrated through model 
validation, when supercritical to sub-critical flow 
transition problem is considered. Results for this test 
are in good agreements with experimental. 
 
3.3. Boundary and Initial Conditions 
For the complete definition of the model is 
necessary to define the following boundary 
conditions: 
For internal sub-critical flows distinction between 
inflow and outflow boundaries may prevent 

computational conflicts. Following implementations 
are made at inflow and outflow boundaries. 
At inflow boundary nodes, the components of the 
free stream velocity, u, v and c are specified the 
inflow sediments flux is generally unknown and the 
depth, h, is extrapolated from the inside domain.  
At the outflow boundary nodes, the depth, h, is 
imposed and the velocity components, u, v and c are 
extrapolated from the interior nodes of domain [1]. 
For wall boundary, free slip condition is 
implemented by setting the component of the 
velocity normal to the wall boundary equal to zero. 

0)ˆ.( wnU =  in which U  is velocity component 
vectors and  is the normal vector perpendicular to 
the wall boundary. At bottom boundary conditions 
bed friction is considered and the concentration at 
the reference level  is locally equal to the value 
assumed in an equilibrium condition 

n̂

ac
)(* ac δ  

 
 
4 Model Validation 
Comparisons of the simulated results against 
experimental data for vertical distribution of 
suspended sediment concentration in the case of net 
sediment entrainment and longitudinal concentration 
profile in channels with net deposition are used to 
show the accuracy of the developed model. 
 
4.1. Case 1: Development of Concentration 
Profile with clear water inflow at the 
upstream boundary 
The experiment reported by van Rijn [20] is the 
typical cases to study the development of sediment 
concentration profiles in the downstream channel, A 
net sediment entrainment from the loose bed into 
suspension was observed at all test sections. The 
channel had 30 m length, 0.5 m width, and 0.7 m 
height. 
In the experiment, the water depth was H = 0.25 m 
at the upstream and the mean velocity was U=0.67 
m/s. The bed material consisted of sand with 
D50=0.23 mm and D90=0.32 mm. The reference level 

aδ  is set to be 0.05h according to that specified by 
Olsen [14]. The representative particle size for 
determining the fall velocity was chosen equal to 
0.23 mm. The corresponding fall velocity was 
0.0237 m/s and its obtained from the semi-empirical 
formulation of Cheng [3] for calculating sediment 
settling velocity from the effective diameter of the 
suspended sediment 
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In which  is particle diameter for 50% finer of 
bed material,  is the dimensionless grain size that 
described above. At the inlet section (x/H=0.0) the 
concentration C was set equal to zero. 

50D

*D

The coefficient of the sediment source/sink term 
calibrated to achieve the best numerical results. The 
simulated results at four locations measured from 
(x/h=4.0 to x/h=40.0) are shown in Fig. (2) and 
compared with the measured concentration profiles. 
It can be observed, the present model under non-
equilibrium condition successfully computes 
acceptable results at all downstream stations. 
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Fig. 2.a. Computed and measured suspended 

sediment for net entrainment at x/H=10 
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Fig. 2.b. Computed and measured suspended 

sediment for net entrainment at x/H=10 
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Fig. 2.c. Computed and measured suspended 

sediment for net entrainment at x/H=20 
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Fig. 2.d. Computed and measured suspended 

sediment for net entrainment at x/H=40 
 
 

4.2. Case 2: Flow in a straight channel with 
net deposition of suspended load. 
The laboratory flume a set of experimental 
measurement is used which is performed in aa 
special flume of 30m long, 0.5m wide and 0.5 deep 
(Figure 3) [25]. 

 

 
Fig. 2. Experimental setup [25] 

 
The flume was divided into three sections. The first 
section was the inflow section with a rigid bed of 
10m length. The second section was test section 
with perforated bed of 16m length and outflow of 
section of 4m length. The test section was made up 
perforated plates to avoid erosion. In order to make 
sure for no flow development in the chamber below 
perforated plates, the chamber was subdivided in 
compartments of 0.5m length and width equal to the 
flume. Rigid bed was given artificial bed roughness 
equal to the perforated bed roughness to minimize 
the change in flow conditions due to bed change 
from rigid to perforated bed. Sediment concentration 
was measured by a sediment sampler which was 
able to take 8 samples at a cross section in vertical 
direction simultaneously. The depth average 
sediment concentration was calculated using those 8 
samples. So, over the test section there is a net 
deposition of suspended load. The mean velocity 

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007      196



was U = 0.56 m/s and the water depth H=0.215 m. 
The characteristic diameters of the sediment 
material were D50 = 0.1 mm, and D90= 0.105 mm. 
Settling velocity measured by Wang during 
experiment was 0.7cm/sec. 
For achieving best result, the fall velocity is 
computed considered by relation (22). Using this 
relation for  the value of 0.732cm/sec is obtained. sw
Computed suspended sediment concentration along 
the flume (by using two different values for α  the 
coefficient sediment source/sink term) is compared 
with reported measured values. As can be seen, the 
computed results are in good agreements with the 
concentration distribution 
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Fig. 3. Comparison between 

measured and computed sediment 
concentration along the flume 

 
5 Conclusion 
Numerical experiments are performed by developing 
a flow solver for modeling of sediment transport in 
non-equilibrium condition. The algorithm is based 
on solving the depth averaged flow equation by a 
cell-centre finite volume method on unstructured 
meshes. 
 Two simulation cases in straight open channels, 
with and without net sediment entrainment with 
reported laboratory measurements are utilized for 
investigation of the quality of the numerical results. 
However, from the sediment erosion and deposition, 
there is sensitivity in non equilibrium adaptation 
coefficient α  (in source/sink term of the suspended 
sediment convection/diffusion equation). However, 
by tuning and calibration of this parameter, the 
satisfactory agreements between the computed and 
experimental were achieved. In present model 

006.0=α  was taken to achieve the best results. A 
comparison between analytical solution data and 
numerical results, obtained with a cell center finite 
volume algorithm, is presented. 
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