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Abstract: We theoretically investigate the switching properties of nonlinear electron-wave directional couplers 

by applying the coupled mode theory. Analytical results for the probability of finding the electron wave in 

each waveguide, for arbitrary initial occupation of each waveguide, are presented. Our findings reveal that 

several technologically important cases can be achieved, such as significant or complete electron transfer 

between the waveguides or trapping of the electron wave in the initial state, depending on the structural 

parameters of the device. In addition, for specific values of the initial state of the system the important case of 

symmetry breaking is realized.  
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1   Introduction 
Several studies have proposed devices that could 

realize coherent electron transport. An important 

device in this area of quantum electronics is the 

electron-wave directional coupler [1-10]. This device 

has also been recently proposed for applications in 

quantum computation [11-15]. In a particular study, 

Tsukada et al. [7] proposed and analyzed numerically 

with the use of coupled mode theory a nonlinear 

electron-wave directional coupler. This device 

consists of two closely spaced, parallel electron 

waveguides with extremely small capacitances. They 

showed that this device exhibits either complete 

electron transfer from one waveguide to the other or 

electron self-trapping to the initially excited 

waveguide for specific values of the system 

parameters. A symmetry breaking effect is also found 

in the case that both waveguides are initially excited 

in a coherent superposition state.  

In a later work [16] we revisited the nonlinear 

electron-wave directional coupler of Tsukada et al. [7] 

and presented analytical results for the probability of 

finding the electron wave in each waveguide for the 

case that only one waveguide is initially excited. We 

also calculated the critical length of the device. In 

addition, we proposed a new type of device, a bent 

nonlinear electron-wave directional coupler and 

studied its switching characteristics. 

In this article we study further the switching 

characteristic of the nonlinear electron-wave 

directionall coupler of Tsukada et al. [7] and obtain 

analytical results for the probability of finding the 

electron wave in each waveguide for the case that the 

system is initially in an arbitrary superposition state. 

These results show the general behavior of the system. 

With the analytical solution we also manage to explain 

the effect of symmetry breaking that can occur in this 

system [7] and also show the crucial dependence of 

this effect to the form of the initial state of the system.  

This article is organized as follows: in the next chapter 

we present the basic equations based on coupled mode 

theory. In chapter 3 we present analytical results for 

the case of arbitrary initial conditions. Then, in the 

following three chapters the behavior of the system for 

several cases of initial conditions is presented. Finally, 

we summarize our findings in chapter 7.  
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2   Theoretical Model 
For the theoretical analysis of the nonlinear electron-

wave directional coupler we use coupled mode 

theory [1-3,7]. According to this approach the 

wavefunction ( )zψ  of the electron propagating 

along the z direction can be written as a linear 

combination of the eigenfunctions of the individual 

waveguides aψ , bψ , 

( ) ( ) ( )a bz a z b zψ ψ ψ= + .   (1) 

If this wavefuction is substituted into the Schrödinger 

equation we obtain the following set of nonlinear 

coupled differential equations (we use 1=ℏ  in this 

paper) 

( ) ( )( ) ( )
2

01 2 ( )
da z

i a z a z k b z
dz

= −Ω − + , (2) 

( ) ( )( ) ( )
2

01 2 ( )
db z

i a z b z k a z
dz

= Ω − + , (3) 

where 0k  is the waveguide coupling constant per unit 

length. In the derivation of Eqs. (2) and (3) a 

symmetric waveguide structure is assumed. The 

coefficient 0k  arises due to electron tunnelling 

between the waveguides.   

The first terms in the right hand side of Eqs. (2) and 

(3) are due to the Coulomb charging effect that exists 

due to the extremely small capacitance of the 

structure.  Also, /(2 )Q CΩ =  where Q  is the total 

charge on the waveguides per unit length and C  is 

the effective capacitance of the waveguide [7].  We 

note that 0 ,k Ω  are taken positive in our work. The 

quantity of interest is the probability of finding the 

electron wave in each waveguide at a specific 

distance, given by ( ) ( ) ( )
2 2

( ) ,a bP z a z P z b z= = .  

 

3 Analytical Results for Arbitrary 

Initial Conditions 
A convenient quantity for obtaining analytical results 

is the difference of these probabilities 

( ) ( ) ( )a bp z P z P z= − . As ( ) ( ) 1a bP z P z+ = , we 

find ( ) ( ) ( ) ( )1 / 2, 1 / 2a bP z p z P z p z= + = −       . 

Our goal is to obtain analytical results for arbitrary 

initial conditions at the input of the waveguide 

coupler ( ) ( )0 00 ,  0a a b b= =  with 0 0,a b  being 

complex numbers with 
2 2

0 0 1a b+ = . 

We combine Eqs. (2)-(3) and obtain  

( ) ( ) ( )02 2
du

p z v z k p z
dz

= − Ω − ,                      (4)  

( ) ( )2
dv

p z u z
dz

= Ω ,                                           (5)   

( )02
dp

k u z
dz

= ,                                                   (6)  

where ( ) ( )( )*( ) 2Rev z a z b z= −  and 

( ) ( )( )*( ) 2 Imu z a z b z= − . Here, 
2 2 2 1p u v+ + = . 

We are interested for analytical results in the case of 

arbitrary initial conditions ( ) 00 =p p , ( ) 00 =u u  

and ( ) 00 =v v  with the constraint
2 2 2

0 0 0 1p u v+ + = . 

By combining Eqs. (5) and (6), we obtain 

0

( ) ( )
( )

Ω
=

dv z dp z
p z

dz k dz
, which by integration gives 

the following equation 

2 2

0 0

0

( ) ( )
2

v z v p z p
k

Ω
 = + −  .      (7) 

Then, from Eq. (4) we obtain 
2 2

2 3

0 0 0

0 0

( ) 2 2 ( ) ( )u z p v k p z p z
k k

 Ω Ω
= − Ω − − 
 

ɺ .(8) 

If now we differentiate Eq. (6) and use Eq. (8) we 

obtain a second order differential equation for ( )p z  

2
2 2 2

0 0 0 02

2 3

2 4 4 ( )

2 ( ).

d p
p k v k p z

dz

p z

 = Ω − Ω − 

− Ω

  (9) 

For arbitrary initial conditions, the solution of Eq. (9) 

is [17,18] 

0( )  ( )
 Ω

= − 
 

D
p z D cn z z k

k
,   (10) 

where      

2

0

2 2 2

0

1
1

2 4

p
k

u

ζ

ζ ξ

 −
 = +
 + 

,              (11a) 

( ) 2 2 2 2

0 0 04D sign p p uζ ζ ξ= − + +            (11b) 

0kξ =
Ω

,                                        (11c) 

02 ( )vζ ξ ξ= + ,                           (11d) 

0arccos( / )

0
2

0 1 sin

p D
k dx

z
D k x

=
Ω −

∫ , if 0 0u = ,   

and 
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0arccos( / )

0 0
2

0

( )
1 sin

p D
k dx

z sign u
D k x

=
Ω −

∫ ,        (11e) 

if 0 0u ≠ .                              

Obviously, for the case of 0 1p = , i.e. the case that 

only the waveguide a  is initially excited, then 

0 0 0u v= =  and Eq. (10) reduces to 

2

0 2

0

( ) 2
4

p z cn k z k
k

 Ω
= = 

 
,   (12) 

that is identical to Eq. (10) of Ref. 16. 

The behaviour of Eq. (10) is governed by the value of 

parameter k  and in turn parameter ξ . In the case 

that 1k = , [ ]0( ) sec ( )p z D h D z z= Ω −  and the 

probabilities in either waveguides reach a steady state 

as the electron-wave propagates in the waveguide. In 

the cases that 1 or 1k k< >  then the evolution of the 

system is periodic. 

 

4 Results for the 0 0u =  case 

We start with the case that 0 0u = . This can occur, 

for example, in the case that both 0 0,a b  are real or 

imaginary. As 
2 2 2

0 0 0 1p u v+ + = , 0v  is not an 

independent parameter as 
2

0 01v p= ± − . 

We can easily find the critical value of the 

nonlinearity parameterξ , 
cξ . The value 

cξ  specifies 

the value of ξ  at which 1k = . Therefore, 
cξ  is 

given by ( )0 1 / 2ξ = − ±c v . In our study we consider 

only positive values for the nonlinearity parameter, so 

we only adopt the positive root and conclude that  

01

2

c v
ξ

−
= .     (13) 

The critical value of nonlinearity parameter
cξ  

corresponds to the value above which the system 

undergoes extended periodic electron transfer with 

the value of ( )p z  changing from 0p  to 0p− . This 

is practically the behavior of the ( | )cn x k  elliptic 

function for 1k < . Actually, for vanishing k-

parameter the cn function becomes a cosine function. 

For values of ξ  below 
cξ  suppression of electronic 

transfer is found and self-trapping to the initial state 

of the system is obtained. This again basically depicts 

the behavior of the ( | )cn x k  elliptic function for 

1k > . Finally, in the case that 1k = , as we have 

noted above the cn function becomes the sech 

function and no oscillations are found. The behavior 

analyzed above can be seen in Fig. 1, where we plot 

the spatial evolution of the probabilities for positive 

and negative values of 0v . 

As can be seen from Figs. 1(e) and 1(f) the behavior 

of the self-trapping region can be different. For 

certain values of Ω  one obtains self-trapped 

oscillations between the initial values [as in Fig. 1(e)] 

and for other values of Ω  there are oscillations above 

and below the initial values [as in Fig. 1(f)].   

 

 

 

Fig.1. We present ( )aP z  (solid curve) and ( )bP z  

(dashed curve) as a function of the normalized 

propagation distance for initial conditions 

0 00.8, 0.2a b= = . This leads to 

0 0 00.6, 0, 0.8p u v= = = − . The parameters of this 

figure are (a) 00.01kΩ = , (b) 0kΩ = , (c) 

01.1kΩ = , (d) 010 / 9kΩ = , (e) 01.2kΩ = , and (f) 

01.5kΩ = . 

 

We note that for 0ξ < −v , the cn elliptic function 

becomes a dn elliptic function. Also, in the case that 

0vξ > −  the oscillations are between the initial values 

[as in Fig. 1(e) where 0.833ξ = ] while for 0vξ < −  

the oscillations are above and below the initial values 

[as in Fig. 1(f) where 0.667ξ = ]. Of special interest 

is the case where 0ξ = −v , then k becomes infinity 

and we have a stable stationary (time-independent) 

solution.  

We now pay some more attention to the case of 

almost equal initial population in both waveguides, 

i.e. the case that 0 0p ≈ . We first note that in the 
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case that 0 0p =  then 0 1= ±v  and 

( ) 0

0

0

0,  for 1
1 / 2

1,  for 1

c
v

v
v

ξ
= +

= − = 
= −

.   (14) 

As we can see from Eq. (10) in this case 0p  stays 

zero at all distances. However, in the case where the 

system is in a superposition state such that 0p  is very 

close to zero but not exactly zero with 

2

0 01 1v p= − − ≈ −  we find that for values of the 

non-linearity parameter below its critical value, 
cξ , a 

symmetry breaking situation is achieved. This can be 

seen in Figs. 2 and 3.  

 

 
Fig.2. The same as in Fig. 1 for initial conditions 

0 00.49, 0.51a b= = . This leads to 

0 0 00.02, 0, 0.9998p u v= − = = − . The parameters 

of this figure are (a) 00.01kΩ = , (b) 00.9kΩ = , (c) 

01.05kΩ = , (d) 02kΩ = . 

 

 

 
Fig.3. The same as in Fig. 2 for initial conditions 

0 00.51, 0.49a b= = . This leads to 

0 0 00.02, 0, 0.9998p u v= = = − .  

 

 

 
Fig.4. The same as in Fig. 2 for initial conditions 

0 00.49, 0.51a b= = − . This leads to 

0 0 00.02, 0, 0.9998p u v= − = = . The parameters of 

this figure are (a) 00.01kΩ = , (b) 02kΩ = . 

 

By symmetry breaking we mean that for cξ ξ>  we 

obtain small amplitude oscillations with the 

probability changing between the initial probabilities 

of the two waveguides, while for cξ ξ<  oscillations 

with large amplitude occurs and even complete 

transfer to one of the waveguides is achieved. In the 

latter case the waveguide that will be mainly excited 

during propagation depends on the sign of 0p .  

This is explained as follows: for negative 0v  we 

obtain a negative ζ , which occurs for 

[ ]00 (1 ) / 2 ~ 1c vξ ξ< < = − , and the coefficient in 

front of the elliptic Jacobi function becomes 

2

0 0 0( ) 2 ( ) 2D sign p p sign pζ ζ= − ≈ − . Also, 

2

01
p

k
ζ

= −  which is almost unity, but always larger 

than unity. As ( )2 1ζ ξ ξ≈ −  the parameter D  

obtains a maximum value approximately at 

0( )D sign p≈  for 0.5ξ ≈ . So, in this case for 

0.5ξ = , depending on the sign of the small initial 

value of 0p , we obtain complete transfer to 

waveguide a  (for positive 0p ) or waveguide b  (for 

negative 0p ). This is shown especially in Figs. 2(d) 

and 3(d). 

The spontaneous breaking effect is also dependent on 

the sign of 0v . This can be seen in Fig. 4. For positive 
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0v , with 0 1v ≈ , we obtain small amplitude electronic 

oscillations between the two waveguides, as in this 

case 0cξ ≈  and we are in the regime that cξ ξ>  

even for very small values of ξ . The only thing that 

changes with the change of ξ  is the period of 

oscillations. 

 

5 Results for the 0 0v =  case 

We continue with the case that 0 0v = . An example 

of this case is the situation that either 0a  or 0b  is 

imaginary and the other is real. In this case we get a 

much simpler expression for the k  parameter as now 

ζ  does not depend of the initial conditions 

(
22ζ ξ= ). From this expression we can find the 

critical value of the nonlinearity parameter as a 

function of 0p  (this that corresponds to 1k = ). 

Easily we obtain that the critical value is 
2

00.5c pξ = .      (15) 

Therefore, we have the same critical value cξ  for 

both positive (
2

0 01u p= + − ) or negative value 

(
2

0 01u p= − − ) of 0u . 

 
Fig.5. The same as in Fig. 1 for initial conditions 

0 00.8, 0.2a b i= = . This leads to 

0 0 00.6, 0.8, 0p u v= = = . The parameters of this 

figure are (a) 00.01kΩ = , (b) 05kΩ = , (c) 

050 / 9kΩ = , (d) 06kΩ = . 

 

In Figs. 5 and 6 we observe that for values of the 

nonlinearity parameter above the critical value 

oscillations occurs with ( )p z  changing between the 

maximum values D−  and D . We stress that, in this 

case, D  can be larger than 0p , so the oscillations 

can occur between values of the probability that are 

larger than the initial probabilities in the waveguides. 

Also, for cξ ξ<  suppression of oscillations and 

transfer is found and self-trapping of the system close 

to its initial state occurs. Results for this are shown in 

Figs. 5 and 6. As it is expected, by comparing the 

results for negative and positive initial 0u , we obtain 

similar results that only differ by a phase factor. The 

symmetry breaking situation along the lines discussed 

in the case of section 4 does not occur here, as in this 

case for very small values of 0p  the critical value cξ  

becomes also very small and we are always 

practically in the regime that cξ ξ> . 

 
Fig.6. The same as in Fig. 6 for initial conditions 

0 00.8, 0.2a b i= = − . This leads to 

0 0 00.6, 0.8, 0p u v= = − = .  

 

6 Results for the 0 0, 0u v ≠  case 

This is the case that both 0 0,a b  are complex in 

general. From the general expression for the 

parameter k [Eq. (11a)] we obtain the critical value of 

the nonlinearity parameter as a function of 0p . After 

some algebra we find that the critical value is given 

by  
2

0 0

2

0

( 1)

2( 1)

c p v

v
ξ

±
=

−
.    (16) 

We concentrate on the positive critical value and get 
2 2 2

0 0 0

0 0

1

2(1 ) 2(1 )

c p u v

v v
ξ

− −
= =

+ +
.   (17) 

Even in this most general case that all values of 

0 0 0, ,u v p  are non-vanishing the behavior of the 

system is rather similar to that discussed in the two 

previous cases. The system executes electronic 

oscillations between the two waveguides with ( )p z  

changing between the maximum values D−  and D  

once the nonlinearity parameter is above the critical 

value 
cξ . In this case, too, D  can be larger than 
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0p , so the electronic oscillations can occur between 

values of probability that are larger than the initial 

probability values. In the case that ξ  is smaller than 

cξ  the system is trapped in its initial state and 

performs oscillations of small amplitude between the 

two waveguides.  

In addition, as in the case of Section 5 the symmetry 

breaking situation does not occur in this general case. 

Only in the case that 0u  takes very small values (such 

that it can be assumed that it practically goes to zero) 

we can recover the symmetry breaking result of 

Section 4. 

 

7 Summary 
In this work we have studied the switching 

characteristic of a nonlinear electron-wave directional 

coupler in the case that the device at the entrance is 

prepared in a general superposition state. We first 

obtained analytical results for the probability of 

finding the electron wave in each waveguide. Then, 

we analyzed the switching behavior of the system for 

specific initial conditions. For different parameters of 

the system extended electronic oscillations between 

the two waveguides, self-trapping in the initial state 

and symmetry breaking can be obtained. 
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