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Abstract: - This paper presents a fault detection and isolation method based on the design of a non linear PCA model 
and a Fisher Discriminant Analysis (FDA). A new fault detection approach based on the estimation of the prediction 
error (SPE: Squared Prediction Error) by the non linear PCA model is proposed. This method associates an adaptative 
thresholding with the study of the dynamic of the SPE. It allows to define several operating regions. The fault isolation 
is based on the pairwise FDA analysis applied to a class without fault and each class with fault.  
In this study, this new diagnosis method is validated in simulation on a quadruple-tank process. Three types of fault are 
simulated in a sensor: a drift, a bias and a breakdown of sensor.  
 
Keywords: - Fault diagnosis, Neuronal Principal Component Analysis, Fischer Discriminant Analysis, Adaptative 
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1   Introduction 
Fault detection and isolation (FDI) is a subject of 
research motivated by the increasing requirements on the 
design of highly reliable control systems [15]. 
Different approaches for fault detection using 
mathematical models have been developed [6] and give 
valid results. Traditionally, these approaches make use of 
residual generation and of their evaluation for decision 
making. Thus, it is possible to detect and localize the 
default. However, it is often difficult to develop accurate 
mathematical models that characterize all the physical 
phenomena occurring in the industrial processes [4]. 
One alternative is to consider the implicit modeling 
approaches [10], based on the data-driving techniques 
such as the linear Principal Component Analysis (PCA) 
or non linear. These methods are well adapted to 
emphasize the relationships between the plant variables 
without the explicit expression of the system model [9]. 
The proposed approach is based on the design of a non 
linear PCA model and a Fisher Discriminant Analysis 
(FDA) [4][12]. 
This method is composed of three stages: 
- in first stage, a data analysis allows to isolate 

normal and abnormal data clusters (data with and 
without fault). The detection index SPE (Squared 
Prediction Error) indicates how much each sample 
deviates from the PCA model [3],  

- secondly, a fault visualization in the principal 
components 2-D space is effected by performing a 
global FDA, 

- thirdly, a study of the fault directions in pairwise 
FDA allows to localize the default.    
In this paper, the non linear PCA model is designed by a 

multilayer neural network [8]. We present an 
improvement of the operating region definition by 
studying the dynamic of the SPE.  
To demonstrate the advantage of the method, we 
propose a simulation example.  
The detection and localization of a drift, bias and 
breakdown of sensor default are tested. The type of 
defaults often appears on the sensors in the industrial 
systems. 
This paper is organized as follow: first, we present the 
principle of non linear PCA modeling based on the 
neural networks. Then, we summarize the different 
stages of sensor fault detection and we detail our 
approach of fault detection. In section 4, we present the 
application of the method to diagnosis of a quadruple-
tank process.  
 
 
2   Non linear PCA by Neural Networks 
We chose to use the approach of Kramer which is based 
on the implementation of a multilayer neural network 
[8]. 
These neural networks are a special class of artificial 
neural networks which are able to learn the principal 
components without explicitly solving the eigenvalues 
and eigenvectors from the sample covariance matrix 
[9][2]. The extraction of the principal components can be 
carried out of sequential or parallel way. We have 
chosen to use this last method. This non linear approach 
of the PCA boils down to define a neural network with 
five layers. The apprenticeship is carried out by 
minimizing the squared error between the inputs and 
outputs of the network. 
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The network has feed-forward architecture. It contains a 
bottleneck layer which allows to represent data in the 
under-space create by principal components [5][11][14] 
[13]. The first layer corresponds to m inputs (data 
matrix) and the fifth layer corresponds to estimated 
inputs. The data are normalized (centred and reduced). 
The activation function of the second layer, called 
encoding layer, and of the fourth layer, called decoding 
layer, is a sigmoid. The choice of the number of neurons 
in these layers is bind to the number of the constraints 
imposed by the set of apprenticeship data (formed of n 
samples).  
The neurons of the bottleneck layer represent the non 
linear principal components. 
 
The choice of the neurons number of the bottleneck layer 
is based on the estimation of an index ε which depends 
of the estimation error: 
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where X represents the input data matrix, X̂  the outputs 
of the network and X  is a matrix of which the rows are 
composed of the X mean vector. 
 
 
3   Fault detection 
In this part, we present the fault detection method 
inspired of the approach proposed by He, et al. [4]. It is 
based on a linear PCA model. Our first contribution 
consists to extend this method to the non linear systems. 
Thus, knowing that the linear PCA isn't adapted, we 
propose to use a Neuronal Non-Linear PCA (NNLPCA). 
Our second contribution is located in the used method to 
determine the presence of a fault and its time of 
beginning and of end. For this, we propose a new error 
study method between the input data and the outputs of 
the NNLPCA. 
 
 
3.1 Data analysis 
In this part, we develop a data analysis method which 
allows to determine the number of the classes with and 
without default. 
Sensor fault detection is based on a similarity test 
between the measured and the estimated data with the 
NNLPCA model. 
Thus, to detect the errors, the typical statistic used is the 
Squared Prediction Error (SPE):  
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where m is the number of the variables. 
 
The detection of an anomaly is carried out by comparing 
the SPE with a threshold δ  defined starting from the 
average error of the model estimation. From this SPE, 
with regard to δ , the existence of an abnormal behavior 
of sensor is detected when : 

δ>SPE    (3) 

He, et al. [4] use the δ2 expression developed by Jackson 
and Mudholkar. In this paper, we propose a new fault 
detection method based on the SPE. We implement, in 
parallel, two algorithms.  
The first algorithm is based on an adaptive threshold (a 
localized average of the SPE) which is compared with 
the envelope of the SPE (minimum and maximum 
localized of the SPE). This approach allows to detect a 
fault when the localized average of the SPE is outside 
the envelope (see Fig. 1). However, when the signal 
variation is weak, the envelope is near of the SPE signal 
and the false alarm rate is important. 

 
Fig. 1. Fault detection illustration 

The second algorithm consists to apply a classical 
gradient convolution mask to the SPE signal. This 
method allows to detect the strong variations of the SPE. 
The final result is the intersection of the two methods. 
Thus the false alarm rate is reduced. The Fig. 2 presents 
the principle of the fault detection method. 
 
This first analysis allows to define working classes by 
keeping the data chronology. The k classes are viewable 
on the sample projection in the non linear principal 
component plane.  
The proximity of the classes varies in function of the 
anomaly importance. He, et al. [4], propose to use the k-
means algorithm to separate a set of data into mutually 
exclusive clusters and thereby, to visualize the classes 
dispersion [1]. 
The samples of the transition area between many classes 
will be removed of the data set. So, we obtain k distinct 
classes of samples: C1, C2, … , Ck. 
 

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007      313



 
Fig. 2 Principle of the fault detection method  

 
 
3.2 Fault visualization 
In this section, we develop the criterions of the 
discrimination retained for the isolation of the class(es) 
presenting a sensor fault.  
The fault visualization exposed by He, et al [4], allows 
to project the classes in a low-dimensional space by 
using the Fisher Discriminant Analysis (FDA). The 
discrimination nature of FDA allows to emphasize the 
separation between the classes with and without fault. 
This separation is carried out in determining the Fisher 
optimal discriminant vector such that the Fisher criterion 
function is maximized. This estimation is based on the 
between-class and without-class scatter matrices. Thus, 
it is possible to isolate the classes with fault. 
 
These two first steps of the diagnosis method allow to 
detect the presence of an anomaly and to locate it in the 
time. The last step consists in locating the variable which 
presents a fault. 
 
 
3.3 Fault localization 
The fault localization is based on the pairwise FDA 
analysis applied to a class without fault and the 
considered class with fault. 
For each association of two classes, we search the Fisher 
direction which separates the data with fault, denoted Ci 
( 11 −= ki K ) from data without fault denoted C0 called 
normal data.  
 
The characteristic Fisher direction for the class i defines 
the direction of the fault for the class Ci. The jth element 
νj of the vector [ ]Tqji ,,,, νννω LL1=  is the 
contribution of the jth variable in the class presenting a 
fault. 
Through Fisher direction vectors ω estimated for each 
class with fault, we can determine the incriminated 
variable. 
 
 

4   Experiments 
The validation of the diagnosis method has been carried 
out in simulation on a benchmark: a hydraulic process.  
We describe in a first section, the benchmark used. In the 
second section are exposed many results obtained using 
the diagnosis method. 
 
 
4.1 Process description 
The approach proposed previously has been validated on 
the quadruple-tank process. The quadruple-tank process 
was developed by Johansson [7] as a novel multivariate 
laboratory process. This process consists of four 
interconnected water tanks, two pumps and two 
associated valves (Fig 3).  
 
The inputs are the voltages supplied to the pumps, υ1 and 
υ2 , and the outputs are the water levels h1–h4. The flow 
to each tank is adjusted using the associated valves γ1 
and γ2. 
 

 
Fig 3. An hydraulic process 

A non linear model is derived based on mass balances 
and Bernoulli’s law: 
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where Ai is the cross-section of tank i, ai is the cross-
section of the outlet hole, and hi is the water level. 
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Parameter Unit Value 
A1, A3 cm2 28 
A2, A4 cm2 32 
a1, a3 cm2 0.071 
a2, a4 cm2 0.057 

kc v.cm-1 0.50 
g cm.s-2 981 

Table 1 Simulation parameters 

The voltage applied to pump i is υi and the 
corresponding flow is kiυi. The parameters γ1, γ2 ∈ (0, 1) 
are determined from how the valves are set prior to an 
experiment. The water flow to tank 1, f1, is 111 υγ k  and 
the flow to tank 4, f4, is ( ) 1111 υγ k−  and similarly for 
tanks 2 and 3. The acceleration of gravity is denoted g. 
The measured level signals are 1hkc  and 2hkc . The 
parameter values of the laboratory process are given in 
Table 1. The model and control of the quadruple-tank 
process are studied at an operating point. The parameters 
values are specified in Table 2. 
 
The data are generated by equations 4 to 7. The 
parameters υi are independently corrupted by Gaussian 
white noise with zero mean and standard deviation of 
0.1. The measured water levels hi are corrupted by 
Gaussian distributed white noise with zero mean and 
standard deviation of 0.2. 
 

Parameter Unit Value 

( )0
2

0
1 h,h  cm (12.4, 12.7) 

( )0
4

0
3 h,h  cm (1.8, 1.4) 

( )0
2

0
1 υυ ,  V (3.00, 3.00) 

( )21 k,k  cm3.V-1.s-1 (3.33, 3.35) 
( )21 γγ ,   (0.70, 0.60) 

Table 2 Operating point parameters 

 
 
4.2 Results 
We strictly concentrated on the diagnosis of sensor 
defaults. The considered sensors are the four heights h1-
h4 and the four water flows f1–f4.  
 
The proposed approach is based on a NNLPCA model 
with five layers with five neurons for the encoding layer, 
four for the bottleneck layer and five neurons for the 
decoding layer. 
 
This study presents results carried out from simulated 
data files modified with simulated defaults and noise. 
We generated 2000 normal data samples. We were 
interested in sensor default of drift, bias and breakdown 
types. Many tests were carried out; each type of default 

is applied on the sensor h4. 
 
4.2.1   Sensor default of drift type 
For this first experiment, we simulated a sensor fault of 
drift type in the fourth height h4. The slope of the drift is 
equal to -0,3 % from the sample 1000 to the end of the 
simulation. 
The Fig. 4 shows the time series data of the process 
variables: water levels h1–h4 and water flows f1–f4 with a 
drift in h4 from the sample 1000. We can see the noise 
introduced for each data. 

 
Fig. 4. Process time series data with sensor 

fault of type drift in h4 

The detection of the fault sensor is carried out using the 
Squared Prediction Error associated to the “envelope 
method”. 
The “envelope method” illustrated by the Fig. 5 allows 
to detect the presence of two strong variations of the 
SPE, at the sample 1104 and close to the end of the 
simulation. So, we note the existence of 3 operating 
regions. The difference of the detection time is inversely 
proportional at the percent of the slope. The beginning 
and end temporal information of each operating region 
allow to project independently the samples associated to 
each class in the non linear PCA score space. 

 
Fig. 5. SPE  
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The Fig. 6 presents the projections of the remaining 
samples in the non linear PCA score space. The samples 
situated in the transition areas are removed. The 
detachment of the second and the third operating regions 
from the first, translates the presence of a fault on these 
samples. 
 
To determine the root cause of the fault, we examine the 
contribution of each variable in the second and third 
operation regions (Fig. 7). 

 
Fig. 6. Clusters in the non linear PCA score 

space after deleting transitional samples. 

This figure clearly shows that the variable 4, associated 
to the sensor h4, is the only root cause of the fault in the 
two operating regions 2 and 3. In conclusion of this first 
experiment, we can say the sensor h4 presents a default 
from the sample 1107 to the end of the simulation. 

 
Fig. 7. Contributions of each variable in the 

classes 2 and 3 

 
4.2.2   Sensor default of bias type 
In this case, a bias in the sensor h4 bas been simulated 
from the sample 1000. The amplitude of this bias is 
equal of 404 .h =∆ .  
 
The Fig. 8 shows the time series data of the process 
variables: water levels h1–h4 and water flows f1–f4 when 
a bias of 0.4 is applied in h4. The presence of this default 
modifies very lightly the h4’s plot. 
The “envelope method” coupled to the SPE allows to 
detect three operating regions Fig. 9. The second begins 
to the sample 1013 and the third to the sample 1310. 
After this first step, we project the samples taking into 
account the temporal information of each operating 
regions, in the non linear PCA score space is presented 
Fig. 10. 

 
Fig. 8. Process time series data with sensor 

fault of type bias in h4 

 
Fig. 9. SPE  

The Fig. 10 allows to note that the operating regions 2 
and 3 present the same fault, because they are confused  
and separate from the operating region composed of 
“normal data”. The formation of two operating regions 
from the sample 1013, defined by the “envelope 
method” applied to the SPE, is a mistake may be due to a 
modeling error. 

 
Fig. 10. Clusters in the non linear PCA score 

space after deleting transitional samples 

The contributions of each variable in the classes 2 and 3 
(Fig. 11), allow to underline the fourth variable. 
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Fig. 11. Contributions of each variable 

 in the classes 2 and 3 

In conclusion, this second study shows the presence of a 
default in the sensor h4 from the sample 1013 to the end 
of the simulation. 
 
4.2.3.   Breakdown sensor 
In this last simulation, we study the breakdown of the 
sensor h4 from the sample 1000. 
The Fig. 12 presents the detection of a default via the 
SPE associated to the “envelope method”. We clearly 
see two operating regions. By comparing the Fig. 9 to 
this of the Fig. 12, we remark that the SPE amplitude has 
increased of 40 times. The increase is due to the 
important fall of the h4 values from the sample 1007. 

 
Fig. 12. SPE 

The Fig. 13 presents the projections of the remaining 
samples in the non linear PCA score space. The SPE 
amplitude jump corresponds to the important separation 
between the two classes (Fig. 13). This remark confirms 
that the second operating region present a default. 

 
Fig. 13. Clusters in the non linear PCA score 

space after deleting transitional samples 

From the contributions of each variable in the class 2 

(Fig. 14), the variable 4 is the root cause of the fault. 

 
Fig. 14. Contributions of each variable in the class 2 

In conclusion of this third experiment, we can say that 
the sensor h4 presents a default from the sample 1007 to 
the end of the simulation. 
 

The results presented in this part allow to validate the 
method of detection in the simulation case of a sensor 
default of drift, bias and breakdown types.  
 
 
5   Conclusions 
This paper presents a detection and isolation method for 
the systems with a non linear behavior. The proposed 
approach is based on the diagnosis method developed by 
He, et al. [4]. We propose in this study two evolutions. 
Our first contribution is to replace the linear PCA model 
with a Neuronal Non Linear PCA model in order to 
adapt this diagnosis method to the Non Linear systems 
[2]. The second contribution is to modify the method 
used to detect the fault presence. We replace the 
comparison of the SPE with a fix threshold and we 
define an adaptative thresholding associates to the study 
of variations of the SPE. 
The results obtained by this method are very satisfactory. 
To through the application on a quadruple-tank process, 
we come to show that it is possible to detect and locate a 
default of sensor of the bias type, drift or even total 
breakdown. 
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