
Tools and Algorithms for Refined Comparison of Protein Structures

YAW-LING LIN ∗
Providence University

Dept. Comput. Sci. & Info. Engineering
200 Chung Chi Road, Shalu, Taichung 433

TAIWAN
yllin@pu.edu.tw

SHIH-PENG HUANG
Providence University

Dept. Comput. Sci. & Info. Management
200 Chung Chi Road, Shalu, Taichung 433

TAIWAN
g9471004@pu.edu.tw

Abstract:Protein structure provides the opportunity to recognize homology that is undetectable by sequence com-
parison, and it represents a powerful means of discovering functions, yielding direct insight into the molecular
mechanisms. In this paper, we propose algorithms and develop tools for pairwise alignment of protein struc-
tures. Methods of locating suitable isometric transformations of one structure and aligning it to the other structure
are addressed. Our methods allow sequence gaps of any length, reversal of chain direction, and free topological
connectivity of atom sequences. We show the effectiveness of the proposed refinement methods by a set of exper-
iments, which improve several previous results.
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1 Introduction

One of the primary goals of structural alignment pro-
grams is to quantitatively measure the level of struc-
tural similarity between all pairs of known protein
structures. This data can provide several meaningful
insights into the nature of protein structures and their
functional mechanisms.

The three dimensional structure of proteins is
highly conserved during evolution [3]. Protein are
constructed by one or more polypeptide chains that
fold into complicated 3D structures. Detection of pro-
teins with a similar fold can suggest a common an-
cestor, and often a similar function [5]. Comparison
of 3D structures makes it possible to establish dis-
tant relationships, even between protein families dis-
tinct in terms of sequence comparison alone. This is
why structural alignment of proteins increases our un-
derstanding of more distant evolutionary relationships
[2, 9]. The link between structural classification and
sequence families enables us to study functions of var-
ious folds, or whole proteins [10].

The smallestroot mean squared deviation (rmsd)
is a least-squares fitting method for two sequences of
points [8]. The idea is to align atom vectors of the
two given (molecular) structures, and use the common
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least averaged squared errors as a measurement of dif-
ferences between these two (paired) sequences. For-
mally, letP = 〈p1, . . . , pn〉 andQ = 〈q1, . . . , qn〉 be
two sequences of points. We assume thatP is trans-
lated so that its centroid( 1

n

∑n
k=1 pk) is at the origin.

We also assume thatQ is translated in the same way.
For each point or vectorx, let (x)i(i = 1, 2, 3) de-
note thei-th (X,Y, Z) coordinate value ofx, and‖x‖
denote the length ofx. Let

RMSD(P, Q, R,a) =

√√√√ 1
n

n∑

k=1

‖Rpk + a− qk‖2

(1)
whereR is a rotation matrix anda is a translation vec-
tor. Then, thermsdvalued(P,Q) betweenP andQ
is defined byd(P,Q) = minR,a d(P,Q, R,a). Al-
though complicated as it might appear, the optimal
rotation matrix and translation vector can be found si-
multaneously inO(n) time. Schwartz [14] showed
thatd(P,Q, R,a) is minimized whena = 0 and

R = (AtA)
1
2 A−1 (2)

where the matrixA = (Aij) i, j = 1, 2, 3 is given by

Aij =
n∑

k=1

(pk)i(qk)j (3)

, A
1
2 = B meansBB = A , ando denotes the zero

vector. Thus,d(P, Q), R anda can be computed in
O(n) time [12].
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Figure 1: The movement of a (parametric) probe.

We adopt Martin’s ProFit (for protein fitting sys-
tem) [11] to calculate theRMSD between Cα atoms
of paired protein backbones. ProFit has many fea-
tures including flexible specification of fitting zones
and atoms, calculation of RMS over different zones or
atoms, RMS-by-residue calculation. Fitting was per-
formed using the McLachlan algorithm [12].

There have been several methods proposed to
compare protein structures and measure the degree of
structural similarity based on alignment of secondary
structure elements as well as alignment of intra
and inter-molecular atomic distances. The basic
ideas are rapid identification of pair alignments of
secondary structure elements, clustering them into
groups, and scoring the best substructure align-
ment. For examples, the VAST system is based
on continuous distribution of domains in the fold
space. The FSSP/DALI system provides two levels
of description – a coarse-grained one and one with
a fine-grained resolution. The method, CATH,
provides the complete PDB fold classification by
domains and links to other sources of information.
The two methods, CE and LGscore2, are based on
a different idea. They focus on the local geometry
rather than global features such as orientation of
secondary structures and overall topology (as in
the case of VAST or DALI) [4, 8, 15]. VAST has
been used to compare all known PDB domains to
each other. The results of this computation are
included in NCBI’s Molecular Modelling Database at
http://www.ncbi.nlm.nih.gov/Structure/-
VAST/vast.html .

Note that there must be an atom-pairing scheme
before one can do thermsd computation. The first
atom of the first selection is compared to the first atom
of the second selection, fifth to fifth, and so on. Our
objective in this paper is to calculate the significance
of score (rmsd) between spatial arrangements of Cα
atom of protein backbone that are not necessarily ad-

jacent in sequence. By matching the backbone Cα
atoms between two sets of atoms, the algorithm can
obtain lower (rmsd) scores comparing to these ex-
isted protein structure alignment systems like VAST
or DALI.

2 Method

Consider the point of north-polen = (0, 0, 1) on the
unit sphere. After the rotation,R, sayn is rotated to
another pointp = (x, y, z); i.e., p = Rn. Let α
denote the angle∠nOp. Note thatα determines the
z-coordinate ofp. To determinex-coordinate andy-
coordinate ofp, the point is rotated around thez-axis
for the angleβ on the unit sphere. Note that there
are infinitely numbers of rotation that transformn to
p. The particular rotationR can be decided by ro-
tating all other points around the vectorp by the an-
gle γ. It is not hard to verified that, in such a way,
any rigid rotation transformation can be parameter-
ized by the three-tuple(α, β, γ). Thus, we call a vec-
tor p = (x, y, z) on the surface of the unit sphere
a probe. Note that themovementof each probe is
started from the north-pole(0, 0, 1) to other points
in the sphere. The position ofp is decided by the
parameters(α, β), and exact rotation is fixed by the
self-rotation angleγ. The movement of the probe is
illustrated by Figure 1.

The main idea of our algorithm for finding a suit-
able matching between two sets of points before uti-
lizing theRMSD procedure to fine-tune the final result
is by searching the suitable (parametric) probe. Af-
ter that, we use the minimum bipartite matching al-
gorithm to find the best matching between two sets
to decide the best matching for theRMSD procedure.
Let P ′ = T ◦ P , andQ being translated toQ′ such
that the mass center ofQ′ is located at the origin. We
construct a weighed graphG = (V, E) with V be-
ing labelled with points ofP ′ andQ′, and each(p, q)
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ROT-MAT(r, θ)
Input: A normal vectorr = (x, y, z) and rotation angleθ
Output:A 3× 3 rotation matrixM
1 Computec ← cos θ; s ← sin θ
2 Return the rotation matrixM =


c + x2 · (1− c) xy · (1− c)− zs xz · (1− c) + ys
xy · (1− c) + zs c + y2 · (1− c) yz · (1− c)− xs
xz · (1− c)− ys yz · (1− c) + xs c− z2 · (1− c)




Figure 2: The matrixROT-MAT rotates 3D points around the vectorr by angleθ.

in E being weighted with the squared Euclidean (3D)
distance; i.e.,w(p, q) = ‖p, q‖2. We then solve the
weighted minimum bipartite matching problem [6] to
obtain the best matching ofP ′ andQ′. By the matched
pairing, we perturb and refine the final alignment to
obtain lowerrmsd.

Since the best parametric probe will be very diffi-
cult to locate, the idea is to send out a team of several
probes over the sphere and let each probe searching its
own proximity in a randomized greedy manner. Note
that the best rotationR consists of two part including
the location of the probe and the self-rotating angle.
In the following, Section 2.1 explains the procedure
that a probe searching better proximity in reducing its
rmsd value. Section 2.2 discusses the procedure to
spreadn probes uniformly on the sphere at random in
details.

2.1 Probes searching on the sphere

For a probe to search better minimum matching and
obtain betterrmsdvalues in its proximity, it needs to
try out another possible location on the sphere. The
ROT-MAT procedure can be used to reach the goal.
For a probep, we can locate in its neighborhood an-
other possible locationp′ to be its new location on
the sphere before performing another self-rotating by
an angleγ. Note that the corresponding rotation ma-
trix M = R(p,p′) can be obtained by the formula
M = ROT-MAT(p × p′, ∠pop′), as shown in Fig-
ure 2.

It remains to show how to locate the neighbor-
ing pointp′ uniformly distributed over the open disc
aroundp on the sphere. Letf(x) be the probabil-
ity density function of a random variableX : R →
R, and letF be the probability cumulative function
F (x) =

∫ x
−∞ f(t)dt. It can be verified thatx =

F−1(p), wherep is taken uniformly from(0, 1), is
a reasonable way of generating a random samplex

that matches the desired probability distribution de-
fined byf .

It follows that the neighboring pointp′ can be
obtained by first deciding the rotating angle around
p. Let RAND() denote a real-valued random function
uniformly distributed over(0, 1). Clearly we expect
that θ = 2π · RAND(). Further, we need to decide
the distanced from p′ to p. Since we expect thatp′

is uniformly distributed over the open disc aroundp
on the sphere, it follows that Prob{‖p,p′‖ = d} ∝ d
whenp′ lies inside the disc. Letr be the radius of the
predefined open disc. Note that the cumulative func-
tion F (d) = d2/r2 in this case. Thus the distanced
can be obtained by the formulad = r · √RAND().

2.2 Uniformly spreading n probes

To uniformly placen probes on surface of the sphere,
we consider the distribution function of the location
of a probep on the sphere in terms of the two pa-
rametersα andβ. Note thatβ is clearly uniformly
distributed in the range(0, 2π). On the other hand,α
is not. It is not hard to verify thatf(α) ∝ cosα; thus
F (α) = sinα. It follows thatα = sin−1(RAND()), is
a way of generation a good random sample point. It is
interesting to note that, sincez = sin(α), we can just
setz = RAND() to be the desired distribution. The
detailed procedure is shown in Figure 3.

3 Experiments and Result

We have implemented these algorithms, by incorpo-
rating serval existing systems as well as writing thou-
sands lines ofC codes in the Linux environment.
In particular, we improve our previously developed
system [10], where the minimum weighted bipar-
tite matching algorithm was adapted from the LEDA
[13] package, where the matching algorithm is imple-
mented by Dijkstra’s algorithm as heuristics in adding

Proceedings of the 6th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics, Istanbul, Turkey, May 27-29, 2007      28



RAND-SPHERE-POINT()
Output:A vector~r(x, y, z) uniformly placed on the sphere
1 z ← RAND(); if RAND() < 0.5 then z ← −z
2 θ ← 2π · RAND()
3 return(cos θ, sin θ, z)

Figure 3: Generating a random point that is uniformly distributed on the unit sphere.

Paired VAST Improved Lin[10] Improved Improved
moleculars rmsd rmsd rmsd ratio (%) ratio (%)
(M1 : M2) (A) (B) (C) (A−B)/A (C −B)/C
101M:2DHB-B 1.66 1.61 1.62 2.78 0.62
101M:1CH4-A 1.49 1.45 1.44 2.82 -0.69
1MLL:1HLM 2.07 1.98 2.08 4.26 4.81
102M:1KFR-A 2.31 2.27 2.30 1.52 1.30
102M:1SPG-A 1.67 1.61 1.61 3.71 0
1SPG-A:1H1X-A 1.76 1.71 1.71 2.84 0
1SPG-A:1SCT-A 2.13 2.09 2.12 1.83 1.42
3HHB-A:1RSE 1.69 1.64 1.64 2.73 0
3HHB-A:1HRM 1.82 1.76 1.76 3.19 0
3HHB-A:1DM1-A 2.27 2.17 2.21 4.36 1.81
2DHB-A:2MGF 1.57 1.53 1.52 2.30 -0.66
2DHB-A:1RSE 1.69 1.64 1.64 2.73 0
1OUT-A:1MOC 1.76 1.69 1.73 3.76 2.31
1OUT-A:1CH2-A 1.74 1.69 1.71 2.99 1.17
1H1X-A:1CH4-A 1.63 1.6 1.61 1.72 0.62
1H1X-A:1FHJ-B 1.67 1.67 1.67 0 0
1H1X-A:1O1P-B 1.80 1.79 1.79 0.83 0

Figure 4: Improvement ratios of our algorithm.
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Figure 5: The progress ofrmsdunder differentθmax = 20◦, 30◦, 40◦, 50◦, fixing γmax = 20◦.
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Figure 6: The progress ofrmsdunder differentγmax = 10◦, 20◦, 30◦, 40◦, fixing θmax = 30◦.

the augmenting path. In the worst case, the time com-
plexity of this algorithm isO(n(m+n log n)) [13]. In
the current version of the system, we adapt the local-
improvement methodology, and the improved version
generally runs with better efficiency, since most of the
time, the probe usually gradually improves its pre-
vious foundrmsd by some local exchanges of some
pairings, where the new method is taking advantage
of.

The experiments demonstrate that our structure
alignment algorithms find better results comparing to
some available structure comparison methods; e.g.,
NCBI’s Vector Alignment Search Tool (VAST) [7].
Several sets of real protein structures are randomly
picked from the PDB [1] for comparing the effective-
ness of our algorithms. We have selected the same
groups of proteins with previous experiments [10] to
compare these results. The result is shown in Figure 4.

In summary, for these (randomly selected) 17
pairs of PDB protein samples shown in Figure 4,
our current structure comparison system improved the
quality of VAST’s rmsd by about 2.59% in average.
Comparing to our previous results, the current system
generally even further improves the results by about
0.75% in average.

Note that the methodology of the current sys-
tem is generally a randomized algorithm whose per-
formance is depended on various setting of the con-
trol parameters. For example, the number of initially
probes on the sphere, the radius of the open disc sur-
rounding the probe, the maximum angle of a self-
rotation probe each time, and so on. In order to obtain
suitable setting of parameters, we focus on the sam-
ples discussed above, and carry experiments to find
out good setting parameters of the systems. Since the
randomized features, for each data and each parame-

ter settings, we perform the experiments over 20 times
and analyze the averaged performance together with
the standard deviation.

The first experiment tries to analyze how the
movement (speed) of probes affects the final found
rmsd. The decisive parameter is the radius of the open
disc on the sphere. Note that the radius can be viewed
from the center as the maximum rotating angle. As-
suming that the maximum self-rotating angleγmax is
fixed to 20◦, we test the parametric settings by ana-
lyzing the maximum angle of probe movement,θmax

of 20◦, 30◦, 40◦, and50◦. The relation between the
perturbation numbers andrmsd is drawn in the dia-
gram of Figure 5. The second experiment tries to an-
alyze how the maximum self-rotating angleγmax af-
fects the finalrmsd. Assuming that the maximum an-
gle of probe movementθmax is fixed to30◦, we test
the maximum rotating angleγmax of 10◦, 20◦, 30◦,
and40◦. The relation between the perturbation num-
bers andrmsdis drawn in the diagram of Figure 6.

In summary, both experiment 1 and experiment
2 shows that the system gradually obtains better
(smaller) rmsd’s when the number of perturbation
process increase. Furthermore, it is observed that suit-
able setting for the maximum angle of probe move-
ment,θmax would be about20◦ or 40◦, while a good
setting for the maximum self-rotating angleγmax

would be about30◦ or 40◦.

To show the real time application scenario, we
perform the third experiment in a situation that the
angle ofθmax = 20◦ andγmax = 30◦. The results
show that the suitable setting of the initial numbers
of probes can be around 3 to 5. We also observe
that the system performs about 5.29 runs of pertur-
bation process per second on average, run under the
Red Hat Linux 7.2 system; the experimental machine
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is equipped with Intel Pentium-4 CPU at 1G HZ. De-
tailed experimental results, including thousands lines
of C source code implementations in UNIX system
and many parameter settings, can be obtained through
e-mail request to the corresponding author.

4 Future Work

Currently the system runs under the assumption that
both sides of the paired proteins have the same num-
ber of atoms. In the future, we will consider the prob-
lem of local structure alignment, where the problem
is trying to find the functional (or active) part of a
given query protein. Furthermore, since the struc-
ture comparison problem, like many scientific com-
putation/simulation problem, is very time-consuming
under cases of large structures and large number of
paired structures, it is desirable to implement the sys-
tem under grid-environment to increase the through-
put of the system.
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