
An application of snap-stabilization: matching in bipartite

graphs ∗

Rachid Hadid Mehmet Hakan Karaata
Department of Computer Science Department of Computer Eng

Mazoon College Kuwait University
P.O. Box 101, PC 133 Sultanate of Oman P.O. Box 5969, Safat 13060 Kuwait

hadid@laria.u-picardie.fr karaata@eng.kuniv.edu.kw

Abstract: A matching M of graph G = (V, E)
is a subset of the edges E, such that no vertex in
V is incident to more than one edge in M. The
matching M is maximum if there is no matching
in G with size strictly larger than the size of M.
In this paper, we present a distributed stabilizing
algorithm for finding maximum matching in bipar-
tite graphs based on the stabilizing PIF algorithm
of [8]. Since our algorithm is stabilizing, it does
not require initialization and withstands transient
faults. The complexity of the proposed algorithm is
O(d×n) rounds, where d is the diameter of the com-
munication network and n is the number of nodes in
the network. The space complexity is O((∆× d)2),
where ∆ is the largest degree of all the nodes in
the communication network. The proposed algo-
rithm can easily be adapted to devise a linear time
optimal algorithm.

Keywords: distributed systems, fault-
tolerance, propagation of information with
feedback and cleaning, self-stabilization, maximum
matching.

1 Introduction

A matching M of graph G = (V, E) is a sub-
set of the edges E, such that no vertex in V
is incident to more than one edge in M. The
matching M is maximum if there is no match-
ing in G with size strictly larger than the size
of M. Given a matching M, vertex v ∈ V is
said to be saturated, if there is an edge in M

∗Contact Author: Mehmet Hakan Karaata,
Email: karaata@eng.kuniv.edu.kw, Phone: (965) 498
5842, Fax: (965) 483 9461

incident on v. If there is no edge in M inci-
dent on v, vertex v said to be unsaturated. An
alternating path in G, with respect to M, is a
path whose edges are alternately in M and in
(E -M). An augmenting path is an alternating
path connecting two unsaturated vertices.

Berge [3] shows that a matching is maximum
if and only if it does not contain an augment-
ing path. This well known theorem gives an
interesting approach to find maximum match-
ing: First, augmenting paths in G are found,
and then the current matching along each such
path is augmented, i.e., each matched edge on
the path is made unmatched and vice versa. If
no such path is found, then the matching is op-
timal. Given this result, a procedure is needed
to find augmenting paths. Finding augment-
ing paths is a well studied problem in graph
theory, for which several efficient sequential al-
gorithms exist [12]. Edmonds [11] was the first
to propose a polynomial algorithm for finding
augmenting paths. This algorithm is based on
the construction of augmenting paths by us-
ing a breadth first search. This method com-
putes a maximum matching in O(mn) time for
a bipartite graph. Hopcroft and Karp [18] pro-
posed an algorithm computing the maximum
matching in bipartite graphs in O(

√
nm) time.

This method combines the breadth first and
the depth first search to find the set of the
shortest augmenting paths, and then augment
the current matching along these paths. Micali
and Vazirani extend this algorithm to general

1

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 234

graphs [25]. The maximum matching problem
has important applications to problems such
as job assignment and task scheduling [16].

A desirable property of the proposed al-
gorithm is the property of self-stabilization.
A self-stabilizing system guarantees that, re-
gardless of the current configuration, the sys-
tem reaches a legal state in a bounded num-
ber of steps and the system state remains le-
gal thereafter. Since the introduction of self-
stabilization Dijkstra [10], self-stabilizing algo-
rithms for many fundamental problems in dis-
tributed systems have been proposed. For ex-
ample, self-stabilizing mutual exclusion algo-
rithms for a variety of network classes have
been presented [4, 6, 10]. Self-stabilizing
model transformers appear in [26, 20]. Self-
stabilizing algorithms for a variety of graph
theoretic problems are presented in [19, 9, 27,
5, 22, 21]. General techniques for construct-
ing self-stabilizing algorithms are dealt with in
[1, 2, 24]. Self-Stabilizing algorithms that con-
tain the effects of a single fault are presented
in [13, 15, 17, 14]. Self-stabilizing algorithms
are able to withstand transient failures. We
view a fault that perturbs the state of the sys-
tem but not the program as a transient fault.
Due to these features, devising stabilizing dis-
tributed, sensor and mobile network protocols
is desirable.

Surprisingly, few papers dealt with this
problem in distributed systems and they are
stabilizing [23, 7]. A stabilizing algorithm
for finding a maximum matching using O(n4)
moves is presented in [23]. Another stabiliz-
ing algorithm was presented in [7] for bipartite
graphs, where each process knows its biparti-
tion and some upper bound N on the num-
ber of processes in the network. This solution
uses a breadth first search method to find aug-
menting paths. In addition, processes in each
bipartition have a different algorithm than the
processes in the other bipartition. The time
complexity of this algorithm is O(n2) rounds.

In this paper, we propose a stabilizing
matching algorithm in bipartite graphs. Our
motivation is not to present yet another match-

ing algorithm in bipartite graphs, but to
present a new approach to deal with this and
similar problems. Our solution uses the well-
known propagation of information with feed-
back (PIF) concept. Specifically, we use a
variation of the PIF algorithm, called Propaga-
tion of Information with Feedback and Clean-
ing algorithm introduced in [8]. The space
requirement of our algorithm is O((∆ × d)2)
per process and the time complexity is O(dn)
rounds, where d is the diameter of the graph.
Due to its simplicity, the proposed methodol-
ogy can easily be adapted to devise a linear
time optimal algorithm or a stabilizing solu-
tion to the problem for arbitrary graphs. Since
it is obtained by making some simple modifi-
cation and additions to the stabilizing PIF al-
gorithm of Cournier et. al [8], it is simpler and
more understandable (after understanding the
mechanism of the stabilizing PIF algorithm)
than that of Chattopadnyay et. al [7]. In ad-
dition, the algorithm’s complexity is improved
over the algorithm of Chattopadnyay et. al [7].
Unlike [7], only unsaturated processes need to
know their bipartition and no process needs to
know an upperbound on the size of the com-
munication network in the proposed algorithm.

The rest of the paper is organized as follows.
In Section 2, we describe the distributed sys-
tem in consideration and define the model of
computation. The proposed stabilizing match-
ing algorithm is presented in Section 3. We
then prove the correctness of the algorithm in
Section 4. Finally, we included some conclud-
ing remarks and discussions on future work in
Section 5.

2 Distributed System and
Program

The distributed system under consideration is
represented by a bipartite graph G = (V, E)
with vertex (node) set V and edge set E. A
bipartite graph G is a graph such that the ver-
tices of G can be partitioned in two non-empty
sets U and V in such a way that every edge in

2

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 235

G joins a vertex in U to a vertex in V. Let
Uun and Us be the set of unsaturated and sat-
urated processes in bipartition U , respectively.
Also let Vun and Vs be the set of unsaturated
and saturated processes in bipartition V, re-
spectively. In our solution, only unsaturated
processes need to know their bipartition.

Nodes of G represent processes and edges
represent bidirectional communications links.
A communication link (i, j) exists iff i and j
are neighbors. We assume that each vertex of
G is a process with a unique identity. For each
process i, Ni denotes the set of its neighbors.

The distributed program of any process con-
sists of a set locally shared variables (hence-
forth referred to as variables) and a finite set
of guarded actions. We assume the local shared
memory model for interprocess communica-
tion, where a process can write only to its
own variables, and read its own variables and
those of the neighbors. Each action is of the
following form: < label >:< guard > → <
statement >. The guard of an action in the
program of i is a boolean predicate over the
variables of i and its neighbors. The state-
ment of an action of i updates one or more
variables of i. If a guard is true, then the
corresponding action is said to be enabled. A
process is called enabled if it has at least one
action enabled. We assume that the actions are
atomically executed, meaning that the evalua-
tion of a guard and the execution of the corre-
sponding statement of an action, if executed,
are done in an atomic step. The atomic ex-
ecution of an action of i is called a step of i.
The state of a process is defined by the values
of its variables. The state of the system (con-
figuration) is a cartesian product of the states
of all processes. An execution (computation)
is a maximal sequence of states e = γ0, γ1, ...
such that for i ≥ 0, γi 7→ γi+1 (a single com-
putation step) by executing some action. We
assume a weakly fair distributed daemon. In
a computation step, if one or more processes
are enabled, the distributed daemon chooses
one or more of these processes to execute their
actions. When a process is chosen for execu-

tion, one of its enabled guards of the process
is selected nondeterministically and the corre-
sponding action is executed. The weakly fair
daemon ensures that if a process is continu-
ously enabled, then it will be eventually chosen
by the daemon. The concept of rounds is used
as a time complexity measure, and it is related
to the slowest process in any execution. Given
a computation e, the first round of e, e′ is the
minimal prefix of e containing one atomic step
of every continuously enabled process from the
first configuration. Let e′′ be the suffix of e,
i.e., e = e′e′′. Then the second round of e is
the first round of e′′, and so on.

3 The Maximum Matching
Algorithm.

In this section, we first describe the (normal)
behavior of the algorithm starting in a legal
configuration. Then, we explain the method
of dealing with arbitrary initialization (error
correction).

3.1 Basis of the algorithm.

Starting in a state where some arbitrary set of
edges are already matched, if the matching is
not maximum, a forest referred to as match-
ing forest is constructed. The matching forest
consists of a set of disjoint trees, referred to as
matching trees such that each vertex or edge
of the graph belongs at most to one match-
ing tree. Each matching tree is rooted at an
unsaturated process in Uun, called the root r
∈ Uun of the tree, and contains all maximal
alternating paths with the root as their ori-
gin. For a matching tree rooted at process r,
the processes and the edges of a matching tree
are the processes and the edges, respectively,
of these maximal alternating paths originating
at r. The terminus (leaf processes) of these
paths are either unsaturated processes in Vun

or saturated processes in Us or Vs.
After the matching forest is constructed,

in every matching tree rooted at a process

3

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 236

r ∈ Uun, root process r initiates the augmen-
tation process along one of the augmenting
paths originating at process r. The augmen-
tation process causes each matched edge to be
unmatched and vice versa in an augmenting
path. Through repeatedly constructing match-
ing trees and augmenting one of the augment-
ing paths in each tree, the maximum match-
ing is obtained by the proposed algorithm.
Note that when possible, the proposed algo-
rithm concurrently and independently builds
disjoint matching trees and augment the dis-
covered augmenting paths.

We use the Propagation of information with
Feedback and Cleaning (PFC) Algorithm of
Cournier et. al [8] to build the matching
trees. The PFC algorithm can be informally
described as follows: starting in an initial con-
figuration where no process has participated in
the broadcast phase, root r initiates the broad-
cast phase by entering the broadcasting state.
Upon discovering a neighboring process p in
the broadcast state, each process q participates
in this phase by assuming process p as its par-
ent and entering the broadcast state. As a re-
sult, a spanning tree T (r) rooted at r is gradu-
ally built during the broadcast phase. The pro-
cesses which are not able to become the par-
ent of another process become leaf processes
in T (r). Once the broadcast phase reaches
the leaf processes of T (r), it notifies its par-
ent in T (r) of the termination of the broadcast
phase by entering the feedback state. Notice
that after the broadcast reaches all the leaves,
the construction of T (r) is completed. Then,
upon discovering that all its immediate descen-
dants in T (r) have participated in the feedback
phase, each internal process also participates
in the feedback phase by entering the feedback
state. In this manner, the feedback phase con-
tinues towards the root process. After itself
and its parent (if any) enter the feedback state,
each node enters the cleaning state marking
the completion of the PIF with respect to the
process.

Each process p in the system maintains a
variable Sp. This variable can be in three dif-

ferent states, cleaning state C, broadcast state
B, and feedback state F . We now describe the
meaning of a process p to be in each one of
these states. If a system process p is in state
C, then process p is ready to participate in the
next PFC cycle. Process p in state B indicates
that process p has participated in the broad-
cast phase by entering the broadcast state and
if (p 6= r), p has a neighbor in the broadcast
state. If process p is in state F , then process
p and all its ancestors have participated in the
broadcast phase, and all the children (if any)
of process p in T (r) and process p itself have
participated in the feedback phase.

Algorithm 3.1 Algorithm for an unsaturated
process i (i ∈ {Uun ∪ Vun})

For process i in Partition Uun (Root): For process i in Partition Vun (Leaf):

Variables Variables
Si ∈ {B, F, C}, Pi : {1, ..., ∆i,⊥}, Li :≤ d Si ∈ {F (B = F), C}, Pi : {1, ..., ∆i,⊥}, Li :≤ d
Mi : {1, ..., ∆i,⊥}, AugPi, MPi : {true, false} Mi : {1, ..., ∆i,⊥}, AugPi, MPi : {true, false}
Predicates Predicates
Broadcast(i) ≡ Si = C ∧ ∀j∈Ni

(Sj 6= C ⇒ Pj 6= i)) Feedback(i) ≡ Si = C ∧ PotentialPi 6= ∅

Feedback(i) ≡ Si = B ∧ Normal(i) ∧ Cleaning(i) ≡ Si = F ∧Normal(i) ∧ SPi
= C

∀j∈Ni
(Pj = i ⇒ Sj = F)

GoodLevel(i) ≡ Li = LPi
+ 1

Cleaning(i) ≡ Si = F ∧ (Pi 6=⊥⇒ SPi
= C) ∧

∀j∈Ni
(Pj = i ⇒ Sj ∈ {F, C}) Augmenting(i) ≡ Si = F ⇒ AugPi

Normal(i) ≡ (Si = B ⇒ (MPi ∧ Pi =⊥ ∧ Li = 0)) ∧ Normal(i) ≡ Si 6= C ⇒ (GoodLevel(i) ∧ Augmenting(i))
(Si = F ⇒ ∀j∈Ni

(Pj = i ⇒ Sj = F))
Macro

Actions PotentialPi = {j ∈ Ni :: Sj = B∧ MPj}
(a1) [] Broadcast(i) →

Si := B; Li := 0; Pi :=⊥; Actions
Mi :=⊥; MPi := true; (a5) [] Feedback(i) →

Si := F ; Pi := min≺p (PotentialPi);
(a2) [] Cleaning(i) → Li := LPi

+ 1; AugPi := true;
Si := C;
Mi := min{j ∈ Ni :: (Pj = i)∧ AugPj}; (a6) [] Cleaning(i) →

Si := C;
(a3) [] Feedback(i) → if MPi

= i then Mi := Pi;
Si := F ;

(a7) [] ¬Normal(i) →
(a4) [] ¬Normal(i) → Si := C;

Si := C;

In addition, each process p maintains two
additional variables Pp and Lp. Variable Pp

denotes the parent of process p and variable
Lp denotes the length of the path followed by
the broadcast phase from r to p.

Each unsaturated process r ∈ Uun initiates
the construction of its matching tree by initi-

4

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 237

ating the broadcast phase (Action a1). When
a saturated process p (such that Sp = C) finds
one of its neighbors q in the broadcast state
(state B), process p enters the broadcast state
by setting variable Sp to B, makes process q
its parent by assigning q to variable Pp and
decides it level by assigning Lq + 1 to variable
Lp (Action a8).

Now we describe the mechanism employed
by the construction of the matching trees.
During the tree construction, we ensure that
each path of the tree originating form r is an al-
ternating path. We implement this constraint
as follows: A process p is permitted to join
the tree, by pointing to its parent q, if the
edge connecting them is matched or this edge
is unmatched however the edge connecting q to
its parent is matched. To implement this, we
introduce another variable called MP at each
process. Each root sets its MP variable to true
upon initiating the broadcast phase (Action
a1). A non-root process sets its MP variable
to true when it joins the tree, if the edge con-
necting it to its parent is matched. Otherwise;
it is set to false (Action a8).

Algorithm 3.2 Algorithm for a saturated pro-
cess i (i ∈ V/{Uun ∪ Vun})

Variables
Si ∈ {B, F, C}, Pi : {0, 1, ..., ∆i − 1}, Li :≤ d Actions
Mi : {0, 1, ..., ∆i}, AugPi, MPi : {true, false} (a8) [] Broadcast(i) →

Si := B; Pi := min≺p(PotentialPi);
Predicates Li := LPi

+ 1; MPi := m(i, Pi);
Broadcast(i) ≡ Si = C ∧ PotentialPi 6= ∅ ∧ AugPi := false;
∀j∈Ni

(Sj 6= C ⇒ Pj 6= i)
(a9) [] Cleaning(i) →

Cleaning(i) ≡ Si = F ∧ Normal(i) ∧ SPi
= C ∧ Si := C

∀j∈Ni
(Pj = i ⇒ Sj = {F, C}) if MPi

= i then Mi := Pi

Feedback(i) ≡ Si = B ∧ Normal(i) ∧ (a10) [] Feedback(i) →
∀j∈Ni

(Pj = i ⇒ Sj = F) Si := F ;
AugPi := ∃j∈Ni

(Pj = i) ∧
GoodPif (i) ≡ (Si = B ⇒ SPi

= B)
∧(Si = F ⇒ ∀j∈Ni

(Pj = i ⇒ Sj = F))
∨

j∈Ni::(Pj=i)(AugPj)

GoodLevel(i) ≡ Li = LPi
+ 1 (a11) [] ¬ Normal(i) →

Si := C;
Alternating(i, j) ≡ m(i, j) ∨ (¬m(i, j) ⇒ MPj)

Augmenting(i) ≡ Si = F ⇒ (AugPi =
∃j∈Ni

(Pj = i) ∧ (
∨

j∈Ni::(Pj=i)(AugPj)))

Normal(i) ≡ Si 6= C ⇒ (GoodPif (i) ∧ GoodLevel(i)
∧ Alternating(i, Pi) ∧ Augmenting(i))

Macro
PotentialPi = {j ∈ Ni :: (Sj = B)∧

Alternating(i, j) ∧ Pj 6= i ∧ Lj < d}

Gradually, each alternating path of each
matching tree grows from its root r ∈ Uun un-
til it reaches a leaf process which is either an
unsaturated process p ∈ Vun or a saturated
process with all its neighbors already partici-
pated in the broadcast phase. We denote this
tree rooted at process r by MTree(r). Once
the broadcast phase reaches a leaf process in
MTree(r), it notifies its parent in MTree(r)
of the termination of the broadcast phase by
entering the feedback phase (Actions a5 and
a10). Upon entering the feedback phase, each
leaf process p also informs its parent about
whether or not it is saturated or unsaturated
(indicating whether or not it is the terminus
of an augmenting path). Consecutively, each
internal process in MTree(r) informs its par-
ent whether or not it has a descendent in
MTree(r) that is the terminus of an augment-
ing path. This is implemented by using the
boolean variable AugP maintained by each sys-
tem process. When an unsaturated leaf process

5

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 238

p ∈ Vun enters the feedback phase, it sets its
AugPp variable to true indicating that it is
the terminus of an augmenting path (Action
a5). Analogously, when a saturated leaf pro-
cess p ∈ Us ∪ Vs enters the feedback phase, it
sets its AugP variable to false indicating that
it is the terminus of an alternating path. Then,
when a saturated internal process p ∈ Us ∪ Vs

participates in the feedback phase, it sets its
AugP variable to true if at least one of its chil-
dren has its AugP variable equal to true. Oth-
erwise; it is set to false (Action a10). Eventu-
ally, all children of r enter the feedback phase
by assigning F to their S variables. Consecu-
tively, r sets its S variable to F (Action a3).
In such a configuration, an augmenting path
(if any) is identified as a path from root r to a
leaf process such that all the processes on the
path have true in their AugP variables.

We now describe the mechanism employed
by the process of augmentation. We first
describe the maintenance of matched edges.
Each process p maintains a single pointer vari-
able, denoted by M, which points to one of its
neighbors. Let M = {(p, q) ∈ E | Mp = q
and Mq = p} define the set of matched edges,
where the size of M is given by |M|.

Upon completion of the feedback phase, the
root process initiates the cleaning phase. In
this phase, an augmenting path originating at
root r and marked by processes whose AugP
variables are true is identified and augmented.
Note that if all the children of r have their
AugP variable equal to false, since no aug-
menting path is detected in MTree(r), root
r will not initiate the augmentation process.
In this case, the cleaning phase proceeds in a
top-down manner by assigning C to S variables
of the processes without carrying out the aug-
mentation (Action a9). If the root detects an
augmenting path originating at r, the root pro-
cess initiates this phase by assigning C to its
S variable and pointing its M variable to one
of its children whose AugPp variable is equal
to true (Action a2). Then, upon discovering
that its parent has C in its S variable, each
process p assigns C to its S variable. In ad-

dition, if its parent has pointed to p with its
M variable, it points also its parent with its M
variable (Action a9). As a result, edge (p, Pp) is
matched. Then, a child q of p becomes unsatu-
rated and now execute the algorithm as a root
process. Then an edge connecting q to one of
its children is matched in the same manner as
edge (r, p) is matched (Actions a2 and a9). In
this manner, an augmenting path is destroyed
and as a result matching tree MTree(r) is de-
stroyed.

The algorithm is shown in Algorithms 3.1
and 3.2 for the unsaturated and saturated pro-
cesses, respectively.

3.2 Error Correction

In order for the proposed algorithm to exhibit
the aforementioned behavior, referred to as
the normal behavior, all system processes must
maintain some properties based on the value of
their variables and those of their parents.

For each process p not in Uun (non-root pro-
cess), the following properties need to be main-
tained.

1. If p is in a broadcast phase, then its
parent is also in the broadcast phase (Imple-
mented by Predicate GoodPif).

2. If p is involved in the PIF cycle, then its
level Lp is one plus that of its parent (Predicate
GoodLevel).

3. If p participates in the broadcast phase,
then p and its parent must belong to an alter-
nating path (Predicate Alternating).

4. If p is in the feedback phase, then its
AugP is true if p ∈ Vun or p /∈ Vun and at
least one of its children has true in its AugP
variable (Predicate Augmenting).

For each root process r ∈ Uun involved in a
new PIF cycle, L = 0, P =⊥, and MP = true
hold.

A process conforming to the above condi-
tions is said to be in a normal state (Predicate
Normal). Otherwise, it is said to be in an ab-
normal state. For satisfying these properties,
the correction actions in both Algorithms 3.1
and 3.2 (Actions a4, a7, and a11) are used.

6

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 239

Unfortunately, removing processes in abnor-
mal states may not be enough to bring the sys-
tem to a normal behavior. There may be some
paths (called abnormal paths, defined in Sec-
tion ??) in the network which do not follow
the normal behavior of the algorithm. Such
paths need to be removed to make sure that
the augmenting paths are detected and even-
tually destroyed.

4 Proof of Correctness

The proof of correctness is not included in this
version of the paper.

5 Conclusion

We presented a distributed stabilizing algo-
rithm for maximum matching problem. We
introduced, for the first time, the PIF scheme
for the design of maximum matching proto-
col. This tool allows to design a stabiliz-
ing maximum matching protocol which needs
O(MaxR×d) rounds to achieve the maximum
matching, where MaxR ≤ n. The space re-
quirement of our algorithm is O((∆× d)2) per
process. In this algorithm, only unsaturated
processes need to know their bipartition. So,
each saturated process in the bipartite graph
runs the same algorithm.

The drawback of our algorithm is that if
MaxR ≈ n then it achieves the maximum
matching in polynomial time. We can rem-
edy this problem as follows: we duplicate the
state of each unsaturated process p ∈ Vs (Leaf)
(variables Sp and Pp) as much as the number
of its neighbors. This allows p to become leaf
of multiple matching trees at the same time.
Then each process r ∈ Uun will be able to
select and then destroy an augmenting path
within at most 5 × d + 4 rounds. So, after
O(d) rounds each process r ∈ Uun becomes
saturated. Hence, all augmenting paths are de-
stroyed concurrently. The proposed algorithm
works only for bipartite graphs. In general
graphs, the presence of odd cycles makes it dif-

ficult to find augmenting paths. We intend to
solve this problem in general graphs using a
stabilizing PIF algorithm.

References

[1] A. Arora and M. G. Gouda. Distributed
reset. IEEE Transactions on Computers,
43:1026–1038, 1994.

[2] B. Awerbuch, B. Patt-Shamir, and
G. Varghese. Self-stabilization by local
checking and correction. In FOCS91 Pro-
ceedings of the 31st Annual IEEE Sym-
posium on Foundations of Computer Sci-
ence, pages 268–277, 1991.

[3] C. Berge. Two theorems in graph theory.
In Proceedings of the Natl. Acad. Sci., vol-
ume 43, pages 842–844, 1957.

[4] G. M. Brown, M. G. Gouda, and C. L.
Wu. Token systems that self-stabilize.
IEEE Trans. Comp., 38(6):844–852, 1989.

[5] Steven C. Bruell, Sukumar Ghosh,
Mehmet Hakan Karaata, and Sriram V.
Pemmaraju. Self-stabilizing algorithms
for finding centers and medians of trees.
SIAM Journal on Computing, 29(2):600–
614, 1999.

[6] J. E. Burns and J. Pachl. Uniform
self-stabilizing rings. ACM Transactions
on Programming Languages and Systems,
11:330–344, 1989.

[7] Subhendu Chattopadhyay, Lisa Higham,
and Karen Seyffarth. Dynamic and
self-stabilizing distributed matching. In
PODC, pages 290–297, 2002.

[8] A Cournier, AK Datta, F Petit, and
V Villain. Self-stabilizing PIF algorithm
in arbitrary rooted networks. pages 91–98,
2001.

[9] AK Datta, C Johnen, F Petit, and
V Villain. Self-stabilizing depth-first to-
ken circulation in arbitrary rooted net-

7

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 240

works. Distributed Computing, 13(4):207–
218, 2000.

[10] E. W. Dijkstra. Self-stabilizing systems in
spite of distributed control. In EWD 391,
In Selected Writings on Computing: A
Personal Perspective, pages 41–46, 1973.

[11] J. Edmonds. Paths, trees, and flowers.
Canad. J. Math, 17:449–467, 1965.

[12] Z. Galil. Efficient algorithms for find-
ing maximum matchings in graphs. ACM
Computing Surveys, 18(1):171–175, 1986.

[13] S Ghosh, A Gupta, and SV Pemmaraju. A
fault-containing self-stabilizing algorithm
for spanning trees. Journal of Computing
and Information, 2:322–338, 1996.

[14] S Ghosh and X He. Fault-containing
self-stabilization using priority schedul-
ing. Information Processing Letters, 73(3-
4):145–151, 2000.

[15] S Ghosh and SV Pemmaraju. Tradeoffs in
fault-containing self-stabilization. In Pro-
ceedings of the Third Workshop on Self-
Stabilizing Systems, pages 157–169. Car-
leton University Press, 1997.

[16] A. Gibbons. Algorithmic Graph Theory.
Cambridge University Press, Cambridge,
1985.

[17] T Herman and S Pemmaraju. Error-
detecting codes and fault-containing self-
stabilization. Information Processing Let-
ters, 73(1-2):41–46, 2000.

[18] Hopcroft and Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2, 1973.

[19] Shing-Tsaan Huang and Nian-Shing
Chen. Self-stabilizing depth-first token
circulation on networks. Distributed
Computing, 7:61–66, 1993.

[20] Mehmet Hakan Karaata. Self-stabilizing
strong fairness under weak fairness. IEEE

Transactions on Parallel and Distributed
Systems, 12(4):337–345, 2001.

[21] Mehmet Hakan Karaata. A stabilizing al-
gorithm for finding biconnected compo-
nents. Journal of Parallel and Distributed
Computing, 62(5):982–999, 2002.

[22] Mehmet Hakan Karaata and Pranay
Chaudhuri. A self-stabilizing algorithm
for bridge finding. Distributed Computing,
2:47–53, 1999.

[23] MH Karaata and KA Saleh. A dis-
tributed self-stabilizing algorithm for find-
ing maximum matching. Computer Sys-
tems Science and Engineering, 15(3):175–
180, 2000.

[24] S Katz and KJ Perry. Self-stabilizing
extensions for message-passing systems.
Distributed Computing, 7:17–26, 1993.

[25] Silvio Micali and Vijay V. Vazirani. An
O(sqrt(|v|) |e|) algorithm for finding max-
imum matching in general graphs. In
FOCS, pages 17–27. IEEE, 1980.

[26] M Nesterenko and A Arora. Stabilization-
preserving atomicity refinement. In
DISC99 Distributed Computing 13th In-
ternational Symposium, Springer-Verlag,
pages 254–268. Springer-Verlag, 1999.

[27] F Petit and V Villain. A space-efficient
and self-stabilizing depth-first token circu-
lation protocol for asynchronous message-
passing systems. In Euro-par’97 Par-
allel Processing, Proceedings LNCS:1300,
pages 476–479. Springer-Verlag, 1997.

8

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 241

