
Hardware Reusable Design of Feature Extraction
for Distributed Speech Recognition

V. RODELLAR-BIARGE, C. GONZALEZ-CONCEJERO, E: MARTINEZ DE ICAYA,

A. ALVAREZ-MARQUINA, and P. GÓMEZ-VILDA
Departamento de Arquitectura y Tecnología de Sistemas Informáticos

Facultad de Informática - Universidad Politécnica de Madrid
Campus de Montegancedo s/n – Boadilla del Monte. - 28660 (Madrid)

SPAIN

Abstract: - The design and implementation of a speech-feature extraction front-end module compliant to the
Standard Aurora for Distributed Speech Recognition Systems (DSR) is presented in this paper. The design has
been oriented towards its reusability in reconfigurable logic implementations. The number of samples of a frame,
energy bands and mel-Cepstrum coefficients are parameterized. The design has been modelled in VHDL
according to the restrictions and recommendations for high level synthesis, being portable among different EDA
tools and technologically independent. The resulting design may be used as a core in the implementation of the
client front-end part of Standard Aurora.

Key-Words: - Standard Aurora, client front-end, speech feature extraction, FPGA implementation.

1 Introduction
The popularity of remote and wireless devices as
cellular phones, personal digital assistants (PDAs)
and tablet computers have increased the interest on
automatic speech recognition (ASR) in mobile
communication systems [1]. They contain tiny
keypads and small screens that make the interaction
with these devices difficult. Speech communication
can facilitate to the consumers the access to
information application portals, voice navigation
maps, finance transaction voice applications, form
filling, etc. The use of a voice interface for mobile
wireless devices is generally limited by computation
capability, memory and battery energy. Currently
many cellular phones have voice dialing capabilities
but they are not able to carry out more sophisticated
ASR tasks.
 The Standard Aurora is an initiative from the
European Telecommunication Standards Institute
(ETSI) which promotes the standardization of the
front-end and client-server protocols for Distributed
Speech Recognition Systems (DSR), its structure
being shown in Fig.1 [2][3]. The objective is to
facilitate the access to computers and
communication services by means of mobile
terminals, avoiding the transmission channel
affecting the recognition system performance. The
DSR client part defines a standard front-end for the
extraction of spectral features on the terminal. These
features are compressed and transmitted to the server
for speech reconstruction or conversion into text.

Fig. 1. Client-server structure.

 The client front-end terminal processes data
sampled at the rates of 8, 11 and 16 kHz and

Raw speech

Client front-end

MFCC feature estimation

Feature Compression

Bit stream framing and
error protection

Channel

Network

Server back-end

Error detection and
mitigation

Decompression

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 47

mailto:victoria@pino.datsi.fi.upm.es
mailto:coral@junipera.datsi.fi.upm.es
mailto:aalvarez@fi.upm.es
mailto:emicaya@eui.upm.es

includes the following blocks: speech feature
extraction, feature compression and framing, bit-
stream and error protection. The server back-end
terminal includes the blocks: bit-stream decoding
and error mitigation, feature decompression and
server feature processing. This last block is not
defined in the standard, which is under evolution,
new features being added in each new version in
order to improve the intelligibility and quality of
reconstructed speech. The principal challenges on
the implementation of the front-end terminal for
mobile applications are the restrictions of area,
limited memory and power dissipation. On the other
hand, semiconductor technology allows designing
very complex devices that can be enclosed as part of
a complete system in a single chip (SoC) [4]. If the
system is conceived from scratch achieving the
desired performance is costly and time consuming.
Nowadays, to meet the tight time-to-market
requirement, the electronic design re-uses pre-
designed cores as a common practice. These cores
may be parametrizable and customizable in order to
be synthesized within a large or small application
specification. They are available to the designer
from heterogeneous sources, design teams, CAD
tool libraries, CAD tool independent libraries, etc.
 In this work we will concentrate on the speech
feature extraction block to evaluate the Mel
Frequency Cepstral Coefficients (MFCC) for the
front-end terminal, and more specifically on its
design as a soft-core. This block may be integrated
with the rest of blocks of the standard in a SoC. The
design has been modelled in VHDL according to the
restrictions and recommendations for high level
synthesis [5]. The resulting design is portable among
different EDA tools and is technology independent.
 The paper is organized as follows. First, we
introduce the steps to be accomplished to extract the
spectral features of speech according to the standard.
Then, an overview of the major implementation
issues of the basic sub-blocks is presented. And
finally, the performance evaluation of the design for
Altera FPGAs is discussed.

2 Feature Extraction overview
The process starts by de-noising raw speech. Then the
spectral features for a 10 ms frame are quantified in
14 parameters, which are 13 mel-cepstral coefficients
(C0 …C12) and the logarithm of the energy, E [6].
The measure of current frame energy is useful to
detect if the signal under processing corresponds to
silence or to speech and to detect the start-end limits
of a word. The coefficient calculation involves the
following steps:

1) Pre-emphasis filtering,

2) Hamming windowing,
3) FFT,
4) Mel filtering
5) Discrete Cosine Transform.

 First a pre-emphasis filter is used in order to
enhance the high frequency components with a factor
of 0.97.
 The window size is 256 samples with an
overlapping each 128 samples, this characteristic
being parameterized for it to be resized as needed. To
smooth the signal and avoid the window side effect, a
Hamming window is applied next.
 The energy spectrum for the resulting Hamming-
windowed frame is calculated by means of the FFT.
The algorithm being used for such a transformation
has been reused from other designs developed by the
authors [7]. Later, the speech signal is passed through
a Mel Filter Bank made of a set of overlapping
triangular filters. Initially, the triangular filters are
equally spaced for low-frequencies but as the
frequency increases, their bands are logarithmically
separated. The number of bands is also parameterized
for reusability.
 The energy of each band is calculated and finally,
Mel Cepstrum parameters are estimated by the
Cosine Transform. The number of MFCC coefficients
is also parameterized.

3 Implementation issues
The design is organized in three main blocks, as
shown in Fig. 2. The first block prepares the data to
be processed by the FFT. It implements frame
overlapping, pre-emphasis filtering, Hamming
windowing and sample reordering. The second one
carries out the FFT calculation. And the last one
implements speech feature extraction by calculating
the frame and band energies and MFCC parameters.
The output from this last block is compressed,
framed and error-protected before being sent to the
network, according to the client front-end structure
shown in Fig. 1. The complete system has been
modelled in VHDL according to the restrictions and
recommendations for high level behavioural
synthesis [5]. The synthesis restriction that critically
affects our particular design is the limitation related
to floating-point number use, for this reason we have
normalized the data multiplying by 1024 (210). The
data format adopted is two’s complement binary and
16 bits. As it was said in the previous paragraph, the
design is parameterized in window size, number
energy bands and number of MFCC coefficients,
which provides enough flexibility to re-scale and
reuse the design. A change in these parameters will
determine RAM memory sizes used as temporal
store, and the number of memory read/write

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 48

accesses. The values of the Hamming window
coefficients, energy bands, and cosines to calculate
the MFCC coefficients are evaluated off-line and
stored into ROM memories, therefore the reusability
of the complete design will be also limited by this
fact, because the values of these memories must be
updated accordingly to re-scaled conditions. On the
other hand, the FFT block implemented is based on a
radix-2 decimation-in-time algorithm, and the
number of window samples and sample coding
number of bits are parameterized as well in order to
control the quantization error when using fixed-point
arithmetics [7].
 In the next paragraphs we will describe some
implementation details for the pre-processing and
parameter extraction blocks.

Fig. 2. Design structure

3.1 Pre-processing block
In order to make the implementation of the pre-
emphasis filter easier and to avoid an operation of
multiplication by a constant, the parameter k=0.97

has been approximated by 31/32. It allows writing the
expression for the filtered sample as:

32
1

1
−

− +−= n
nnn

ssss (1)

Then, the operation can be carried out by means of
two parallel registers storing current and previous
samples s(n) and s(n-1), a five-position shift-right
register to evaluate s(n-1)/32, a subtracter and an
adder. The filtered sample is obtained after three
clock cycles.

3.1.1 Frame overlapping
This procedure has been implemented by means of an
auxiliary RAM memory, which is managed under the
control of a two-clock scheme. This strategy is
adopted in order to avoid losing pre-filtered samples.
The clk2 controls the write operation and works twice
slower than the clock controlling the read operation
(clk1). The memory is divided into two parts of the
same size. One half is updated with the new data and
the other half remains unchanged containing the
overlapped part from the previous frame. An example
for a memory of 8 positions is shown next.

Speech samples

Fig. 3. Memory-update strategy

 Initially, a complete frame contained in the
memory positions from 0 to 7 is read. While these
data are processed by other functional blocks, new
data inputs from the next frame are updated and
written in the memory positions 0 to 3. For the next
frame positions 4 to 7 will be read first and positions
0 to 3 later on. So the actual frame and the previous
one have their overlapping samples stored in
positions 4 to 7. For the next frame, new data inputs
are written in positions 4 to 7. In this case, the
memory will be read in an opposite way than before,

 Pre-processing

Pre-emphasis filter

Frame overlapping
Hamming windowing

Sample reordering

FFT

Parameter extraction

ROM
Hamming
coefficients
reordering
address

Energy calculation
MFCC calculation

RAM
Frame
overlapping

RAM
Hamming
window
results

ROM
MFCC
cosines

ROM

Bands

7 3 0

Frame-1

7 3 0

Frame-2

7 3 0

Frame-3

7 3 0

Frame-4

New Overlapping

Frame
energy

Cepstrum
coefficients

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 49

positions 0 to 3 first and positions 4 to 7 next. Now
the current frame and the previous one have in
common the samples contained in positions 0 to 3.
And the process goes on.

3.1.2 Hammig windowing
The implementation of the Hamming windowing has
been carried out by a ROM and RAM memories, and
a multiplier. All of them are controlled by clk2. The
ROM memory contains the values of the Hamming
function and the address where the windowed results
are to be stored in the auxiliary RAM memory. The
reason to enclose this address together with the
window value is to prepare the samples in the right
order to be processed properly by the FFT algorithm.
So, they do not need any later group sample shuffling
into even and odd as is required by decimation-in-
time FFT algorithms. The addresses are generated
according to a bit reversal addressing mapping. An
example for 8 bits is shown next.

Reading address
in ROM

Writing address
in RAM

 000 (0) 000 (0)
 001 (1) 100 (4)
 010 (2) 010 (2)
 011 (3) 110 (6)
 100 (4) 001 (1)
 101 (5) 101 (5)
 110 (6) 011 (3)
 111 (7) 111 (7)

Table 1. Sample addressing by bit reversal reordering

3.2 Parameter extraction block
This block has been structured as three main sub-
blocks named: bands of energy, natural logarithm and
mel-cepstrum. We will introduce the structures
designed for them in the next sections.

3.2.1 Bands of energy
The calculation of the frame energy and band energy
are done in parallel, as can be seen in Fig. 4. The
design is done with the following basic sub-blocks:
shifter_right, multiplier, counter, ROM and two
accumulators. The shifter_right unit normalizes the
data coming from the FFT and the multiplier squares
the resulting data from the previous operation. The
counter addresses the ROM memory that contains the
accumulation limits of the bands, and controls the
accumulation operation to obtain the energy of a
frame.

SHIFTER_
RIGHT_
ENT (1)

fourier1

clk

rst
SHIFTER_
RIGHT_
ENT (2)

fourier2

clk

rst

MULTIPLIER_
ENT (1)

clk

rst

MULTIPLIER_
ENT (2)

clk

rst
fourier1_shifted

fourier2_shifted

enable_f enable_f

ADDER_
ENT (1)

clk

rst

COUNTER_
ENERGY_

ENT
clk

rst

ROM_
BANDS_

ENT
clk

rst

ACCUMULATOR_
ENT

clk

rst

ACCUMULATOR_
BANDS_

ENT
clk

rst

add

product1

product2

done_ce

done_rom

enable_acc1

enable_acc2

enable_acc3

done_a
done_p1

done_p2

done_band

done_energy

(1) (2) (3) (4)

shifted1

shifted2

band

energy

Fig. 4. Structure to evaluate the energy bands

3.2.2 Natural logarithm calculation
The final result of one band energy is obtained after
calculating the natural logarithm. This logarithm is
calculated taking starting from the logarithm in base
two. A classical way to implement logarithmic
functions is by pre-calculated look-up tables; this
solution demands a lot of area and lacks reusability.
In order to avoid these inconveniences, the base-two
logarithm has been implemented by using the method
developed by Mitchell [8]. The implementation is
very simple and appropriate for supporting
reusability. The method in many cases is not exact
but gives a good approximation; nevertheless the
resulting values may be corrected to improve
accuracy if required. The basic idea is to split the
calculation into two parts, obtaining the final result as
the addition or concatenation of them as in:

(log

2
Z)

aprox
= c + m (2)

 The characteristic part c is the binary value of the
position of the first non-zero bit starting from the
most significant bit to the least significant one. The
mantissa m is determined by the remaining bits to the
right, starting from the first non-zero bit detected. As
an example, the base-2 logarithm of 21 (decimal) is

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 50

4.3922. And its binary representation is 00010101.
The characteristic part is determined by the bit
located in position number four (24), then c=100. The
mantissa is defined by the remaining bits, m= 0101.
The final result is 100.0101, which is 4.3125.
 The structure designed to calculate the natural
logarithm is shown next.

BINARY_
LOG_
ENT

clk

rst

SHIFTER_
LOG_
ENT

clk

rst

SHIFTER_
RIGHT_
ENT (3)

clk

rst

ADDER_
ENT (2)

clk

rst

log_N
p

done_logNp
done_log2

done_log

(5)

(6)

(3)

(4)

8617

UPSCALE_32_
ENT

clk

rst

done_log1

log
log1

value_logarithm(i-1 DOWNTO 0)

ready_logarithm

log2

Fig. 5. Computation of the natural logarithm from
base-two logarithms

 Once the logarithm in base two is calculated, the
16 bit data format is expanded into 32 bits by means
of the functional unit upscale_32. And then the
transformation into the natural logarithm is done
according to:

 (3) (logln +=

 Initially the result of the logarithm in base two is
multiplied by the number 11357. The multiplication
has been implemented by shift-left operations:

∑ <<⇒ xshifter 2loglog_ (4)
 Considering that 11,357 may be represented as:

02346101113 2222222211357 +++++++=

the values of the shifts (x) will be then: 13, 11, 10, 6,
4, 3, 2, 0. Next, a normalization operation consisting
in fourteen right shifts carried out. Finally, the partial
result is corrected by adding the amount of 8,617,
which is equivalent to calculate ln (64x2048).
 After the operations mentioned above are
finished, data are ready for Mel Cepstrum coefficient
calculation.

3.2.3 Cepstrum coefficients
Finally, the basic structure implemented to obtain the
mel-cepstrum coefficients is shown in Figure 6. It
consists of a counter to address the ROM memory,
which contains the cosine values to compute the
Cosine Transform, a set of registers for
synchronization purposes and a substructure
consisting of a multiplier and accumulator to
compute a single coefficient (encircled within the
dash line) in the scheme. This structure may be
replicated as many times as coefficients to be
computed in parallel.

4 Performance evaluation
The system was synthesized with the EDA tool
Quartus II from Altera without using any pre-
designed component available in its libraries [9]. The
device selection was automatically carried out by the
tool, choosing in this case the EP1S20F484C5 from
the Stratix family. Then, the results presented here
may be optimized having into consideration the
synthesis tool recommendations and the
particularities of the device. Each block was first
synthesized and the complete system after, following
a bottom-up standard procedure.
 The physical resource demand after synthesis is
shown in Table 2. The pre-processing block requires
more logic elements and memory bits than the
feature extraction block. However, this last one
demands more DSP units because it has to do more
arithmetic computations. It may be seen that the
complete system fits in the selected device. Extra
resources are still available, except for logic
elements, which are almost finished.
 The performance results in terms of frequency
and power dissipation are shown in Table 3. In this
table the results for clk1 and clk2 used in the frame
overlapping sub-block, and for clk that controls the
feature extraction block are evaluated. The results in
frequency obtained for the stand-alone blocks and
the complete system synthesis are very similar.
Concerning power dissipation, it can be noticed that
the consumption of the pre-processing stage is larger
than the feature extraction one.

8617)11357*2

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 51

COUNTER_
COS_
ENT

clk

rst

enable_band

REGISTER_PP_
ENT

clk

rst

enable_band

ROM_COS_
ENT

clk

rst

address_cos

REGISTER_B_
ENT

clk

rst

REGISTER_PP_
ENT

clk

rst

REGISTER_B_
ENT

clk

rst

MULTIPLIER_
ENT

clk

rst

MULTIPLIER_
ENT

clk

rst

cos1

co
da

s10
done_rom done_pp2

ta_pp2

REGISTER_B_
ENT

clk

rst

SHIFTER_
RIGHT_

ENT
clk

rst

SHIFTER_
RIGHT_

ENT
clk

rst

.........

.........

ACCUMULATOR_
CEPSTRUM_

ENT
clk

rst

ACCUMULATOR_
CEPSTRUM_

ENT
clk

rst

.........

data_pp1

done_pp1

done_end

done_ccos
data_b1

data_b2

data_b3

done_b1

done_b2

done_b3

prod10

done_p10

shifted10
shift10

band

prod1

done_p1

shifted1

shift1

m
el1

done_m
el

m
el10

1

done_m
el

...

 Fig. 6. Mel Cesptrum Coefficients Block Diagram

LE

(18,430)

Pins

(362)

Memory

bits

(1,669,248)

DSP

(80)

Pre-

processing
10,030 53 4,096 2

Feature

extraction
6,033 72 48 42

Complete

System
18,340 29 4,321 52

 Table 2. Resources demanded
F.Max (MHz) Power(mw)

clk1 clk2 clk Internal I/O Total

Pre-

processing
269.47 99.74 502.74 9.43 512.17

Feature

extraction
 103.31 348.99 20.27 369.26

Complete

system
244.34 97.64 102.63 2,346.82 81.13 2,427.95

 Table.3. Time and power

4 Conclusions
In this paper, a parameterized speech feature-
extraction design oriented to reusability as a core for

the implementation of the server front-end for the
Standard Aurora has been presented. The design may
be used as part of a SoC to implement all parts of the
standard. A re-scaling in the parameters will affect to
RAM memory sizes and read/write accesses. ROM
memories size and contents are to be calculated off-
line. The performance of the system can be
considered sufficient for the application.
Nevertheless, it can be improved using pre-designed
library blocks from the design tool, at the cost of
loosing design portability.

Acknowledgments
This work is funded by grant TEC2006-12887-C02-
00 from Plan Nacional de I+D+i, Ministry of
Education and Science, Project HESPERIA
(http.//www.proyecto-hesperia.org) from the
Programme CENIT, Centro para el Desarrollo
Tecnológico Industrial, Ministry of Industry, Spain
and Project IBIOL (CCG06-UPM/INF-28) from
Autonomic Government of Madrid, Spain.

References:
[1] Uve Hansmann, Lothar Merk, Martin S. Nicklous,

Thomas Stober. “Persuasive Computing: the
mobile world”. Springer Verlag 2003.

[2] http://www.etsi.org/aurora/
[3] ETSI ES 2002 050, V1.1.5. “Speech Processing

Transmission and Quality Aspects (STQ);
Distributed Speech Recognition; Advanced front-
end feature extraction algorithms, Compression
Algorithms”. European Telecommunications
Standard Institute, January 2007.

[4] Bashir M. Al-Hasmini Ed. “Systems-on-chip:
Next Generation Electronics”. IEEE Circuits,
Devices and Systems, Series 18, 2006.

[5] J Michel Keating and Pierre Bricand, “Reuse
Methodology Manual: For System-on-a-Chip
Designs”. Third Edition. Kluwer Academic
Publishers, 2002.

[6] J. R. Deller, J. G. Proakis and J. H. L. Hansen
“Discrete-Time Processing of Speech Signals”,
Mc Millan, NY, 1993.

[7] C. Gonzalez-Concejero, V. Rodellar, A, Alvarez-
Marquina and P. Gómez-Vilda, “A portable
hadware design of a FFT algorithm”, Latin
American Applied Research, Vol. 37, pp. 79-82,
2007.

[8] J. N. Mitchell, “Computational multiplication and
division using binary logarithms”, IRE
Transactions on Electronic Computers, pp. 512-
517, August 1962.

[9] http://www.altera.com

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 52

