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Abstract: - The design and implementation of a speech-feature extraction front-end module compliant to the 
Standard Aurora for Distributed Speech Recognition Systems (DSR) is presented in this paper. The design has 
been oriented towards its reusability in reconfigurable logic implementations. The number of samples of a frame, 
energy bands and mel-Cepstrum coefficients are parameterized. The design has been modelled in VHDL 
according to the restrictions and recommendations for high level synthesis, being portable among different EDA 
tools and technologically independent. The resulting design may be used as a core in the implementation of the 
client front-end part of Standard Aurora. 
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1   Introduction 
The popularity of remote and wireless devices as 
cellular phones, personal digital assistants (PDAs) 
and tablet computers have increased the interest on 
automatic speech recognition (ASR) in mobile 
communication systems [1]. They contain tiny 
keypads and small screens that make the interaction 
with these devices difficult. Speech communication 
can facilitate to the consumers the access to 
information application portals, voice navigation 
maps, finance transaction voice applications, form 
filling, etc. The use of a voice interface for mobile 
wireless devices is generally limited by computation 
capability, memory and battery energy. Currently 
many cellular phones have voice dialing capabilities 
but they are not able to carry out more sophisticated 
ASR tasks.  
   The Standard Aurora is an initiative from the 
European Telecommunication Standards Institute 
(ETSI) which promotes the standardization of the 
front-end and client-server protocols for Distributed 
Speech Recognition Systems (DSR), its structure 
being shown in Fig.1 [2][3]. The objective is to 
facilitate the access to computers and 
communication services by means of mobile 
terminals, avoiding the transmission channel 
affecting the recognition system performance. The 
DSR client part defines a standard front-end for the 
extraction of spectral features on the terminal. These 
features are compressed and transmitted to the server 
for speech reconstruction or conversion into text.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Client-server structure. 

 
     The client front-end terminal processes data 
sampled at the rates of 8, 11 and 16 kHz and 
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includes the following blocks: speech feature 
extraction, feature compression and framing, bit-
stream and error protection. The server back-end 
terminal includes the blocks: bit-stream decoding 
and error mitigation, feature decompression and 
server feature processing. This last block is not 
defined in the standard, which is under evolution, 
new features being added in each new version in 
order to improve the intelligibility and quality of 
reconstructed speech. The principal challenges on 
the implementation of the front-end terminal for 
mobile applications are the restrictions of area, 
limited memory and power dissipation. On the other 
hand, semiconductor technology allows designing 
very complex devices that can be enclosed as part of 
a complete system in a single chip (SoC) [4]. If the 
system is conceived from scratch achieving the 
desired performance is costly and time consuming. 
Nowadays, to meet the tight time-to-market 
requirement, the electronic design re-uses pre-
designed cores as a common practice. These cores 
may be parametrizable and customizable in order to 
be synthesized within a large or small application 
specification. They are available to the designer 
from heterogeneous sources, design teams, CAD 
tool libraries, CAD tool independent libraries, etc.  
     In this work we will concentrate on the speech 
feature extraction block to evaluate the Mel 
Frequency Cepstral Coefficients (MFCC) for the 
front-end terminal, and more specifically on its 
design as a soft-core. This block may be integrated 
with the rest of blocks of the standard in a SoC. The 
design has been modelled in VHDL according to the 
restrictions and recommendations for high level 
synthesis [5]. The resulting design is portable among 
different EDA tools and is technology independent.  
     The paper is organized as follows. First, we 
introduce the steps to be accomplished to extract the 
spectral features of speech according to the standard. 
Then, an overview of the major implementation 
issues of the basic sub-blocks is presented. And 
finally, the performance evaluation of the design for 
Altera FPGAs is discussed. 
 
2 Feature Extraction overview 
The process starts by de-noising raw speech. Then the 
spectral features for a 10 ms frame are quantified in 
14 parameters, which are 13 mel-cepstral coefficients 
(C0 …C12) and the logarithm of the energy, E [6]. 
The measure of current frame energy is useful to 
detect if the signal under processing corresponds to 
silence or to speech and to detect the start-end limits 
of a word. The coefficient calculation involves the 
following steps: 

1) Pre-emphasis filtering, 

2) Hamming windowing, 
3) FFT, 
4) Mel filtering 
5) Discrete Cosine Transform. 

    First a pre-emphasis filter is used in order to 
enhance the high frequency components with a factor 
of 0.97. 
     The window size is 256 samples with an 
overlapping each 128 samples, this characteristic 
being parameterized for it to be resized as needed. To 
smooth the signal and avoid the window side effect, a 
Hamming window is applied next. 
     The energy spectrum for the resulting Hamming-
windowed frame is calculated by means of the FFT. 
The algorithm being used for such a transformation 
has been reused from other designs developed by the 
authors [7]. Later, the speech signal is passed through 
a Mel Filter Bank made of a set of overlapping 
triangular filters. Initially, the triangular filters are 
equally spaced for low-frequencies but as the 
frequency increases, their bands are logarithmically 
separated. The number of bands is also parameterized 
for reusability.  
     The energy of each band is calculated and finally, 
Mel Cepstrum parameters are estimated by the 
Cosine Transform. The number of MFCC coefficients 
is also parameterized. 
 
3   Implementation issues 
The design is organized in three main blocks, as 
shown in Fig. 2. The first block prepares the data to 
be processed by the FFT. It implements frame 
overlapping, pre-emphasis filtering, Hamming 
windowing and sample reordering. The second one 
carries out the FFT calculation. And the last one 
implements speech feature extraction by calculating 
the frame and band energies and MFCC parameters. 
The output from this last block is compressed, 
framed and error-protected before being sent to the 
network, according to the client front-end structure 
shown in Fig. 1. The complete system has been 
modelled in VHDL according to the restrictions and 
recommendations for high level behavioural 
synthesis [5]. The synthesis restriction that critically 
affects our particular design is the limitation related 
to floating-point number use, for this reason we have 
normalized the data multiplying by 1024 (210). The 
data format adopted is two’s complement binary and 
16 bits. As it was said in the previous paragraph, the 
design is parameterized in window size, number 
energy bands and number of MFCC coefficients, 
which provides enough flexibility to re-scale and 
reuse the design. A change in these parameters will 
determine RAM memory sizes used as temporal 
store, and the number of memory read/write 
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accesses. The values of the Hamming window 
coefficients, energy bands, and cosines to calculate 
the MFCC coefficients are evaluated off-line and 
stored into ROM memories, therefore the reusability 
of the complete design will be also limited by this 
fact, because the values of these memories must be 
updated accordingly to re-scaled conditions. On the 
other hand, the FFT block implemented is based on a 
radix-2 decimation-in-time algorithm, and the 
number of window samples and sample coding 
number of bits are parameterized as well in order to 
control the quantization error when using fixed-point 
arithmetics [7].  
     In the next paragraphs we will describe some 
implementation details for the pre-processing and 
parameter extraction blocks. 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Design structure 
         
3.1 Pre-processing block 
In order to make the implementation of the pre-
emphasis filter easier and to avoid an operation of 
multiplication by a constant, the parameter k=0.97 

has been approximated by 31/32. It allows writing the 
expression for the filtered sample as: 

32
1

1
−

− +−= n
nnn

ssss                                                      (1) 

Then, the operation can be carried out by means of 
two parallel registers storing current and previous 
samples s(n) and s(n-1), a five-position shift-right 
register to evaluate s(n-1)/32, a subtracter and an 
adder. The filtered sample is obtained after three 
clock cycles. 
 
3.1.1   Frame overlapping 
This procedure has been implemented by means of an 
auxiliary RAM memory, which is managed under the 
control of a two-clock scheme. This strategy is 
adopted in order to avoid losing pre-filtered samples. 
The clk2 controls the write operation and works twice 
slower than the clock controlling the read operation 
(clk1). The memory is divided into two parts of the 
same size. One half is updated with the new data and 
the other half remains unchanged containing the 
overlapped part from the previous frame. An example 
for a memory of 8 positions is shown next.    

Speech samples 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3. Memory-update strategy 

 
     Initially, a complete frame contained in the 
memory positions from 0 to 7 is read. While these 
data are processed by other functional blocks, new 
data inputs from the next frame are updated and 
written in the memory positions 0 to 3. For the next 
frame positions 4 to 7 will be read first and positions 
0 to 3 later on. So the actual frame and the previous 
one have their overlapping samples stored in 
positions 4 to 7. For the next frame, new data inputs 
are written in positions 4 to 7. In this case, the 
memory will be read in an opposite way than before, 
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positions 0 to 3 first and positions 4 to 7 next.  Now 
the current frame and the previous one have in 
common the samples contained in positions 0 to 3.  
And the process goes on. 
   
3.1.2   Hammig windowing  
The implementation of the Hamming windowing has 
been carried out by a ROM and RAM memories, and 
a multiplier. All of them are controlled by clk2. The 
ROM memory contains the values of the Hamming 
function and the address where the windowed results 
are to be stored in the auxiliary RAM memory. The 
reason to enclose this address together with the 
window value is to prepare the samples in the right 
order to be processed properly by the FFT algorithm. 
So, they do not need any later group sample shuffling 
into even and odd as is required by decimation-in-
time FFT algorithms. The addresses are generated 
according to a bit reversal addressing mapping. An 
example for 8 bits is shown next. 
 

Reading address 
in ROM 

Writing address 
in RAM 

   000  (0)    000  (0) 
   001  (1)    100  (4) 
   010  (2)    010  (2) 
   011  (3)    110  (6) 
   100  (4)    001  (1) 
   101  (5)    101  (5) 
   110  (6)    011  (3) 
   111  (7)    111  (7) 

Table 1. Sample addressing by bit reversal reordering 
 
3.2 Parameter extraction block 
This block has been structured as three main sub-
blocks named: bands of energy, natural logarithm and 
mel-cepstrum. We will introduce the structures 
designed for them in the next sections. 
 
3.2.1   Bands of energy 
The calculation of the frame energy and band energy 
are done in parallel, as can be seen in Fig. 4. The 
design is done with the following basic sub-blocks: 
shifter_right, multiplier, counter, ROM and two 
accumulators. The shifter_right unit normalizes the 
data coming from the FFT and  the multiplier squares 
the resulting data from the previous operation. The 
counter addresses the ROM memory that contains the 
accumulation limits of the bands, and controls the 
accumulation operation to obtain the energy of a 
frame. 
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Fig. 4. Structure to evaluate the energy bands  

 
3.2.2   Natural logarithm calculation 
The final result of one band energy is obtained after 
calculating the natural logarithm. This logarithm is 
calculated taking starting from the logarithm in base 
two. A classical way to implement logarithmic 
functions is by pre-calculated look-up tables; this 
solution demands a lot of area and lacks reusability. 
In order to avoid these inconveniences, the base-two 
logarithm has been implemented by using the method 
developed by Mitchell [8]. The implementation is 
very simple and appropriate for supporting 
reusability. The method in many cases is not exact 
but gives a good approximation; nevertheless the 
resulting values may be corrected to improve  
accuracy if required. The basic idea is to split the 
calculation into two parts, obtaining the final result as 
the addition or concatenation of them as in:  
 
(log 

2 
Z)

aprox 
= c + m                                           (2)  

 
     The characteristic part c is the binary value of the 
position of the first non-zero bit starting from the 
most significant bit to the least significant one. The 
mantissa m is determined by the remaining bits to the 
right, starting from the first non-zero bit detected. As 
an example, the base-2 logarithm of 21 (decimal) is 
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4.3922. And its binary representation is 00010101. 
The characteristic part is determined by the bit 
located in position number four (24), then c=100. The 
mantissa is defined by the remaining bits, m= 0101. 
The final result is 100.0101, which is 4.3125. 
     The structure designed to calculate the natural 
logarithm is shown next. 
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Fig. 5. Computation of the natural logarithm from 
base-two logarithms 

 
     Once the logarithm in base two is calculated, the 
16 bit data format is expanded into 32 bits by means 
of the functional unit upscale_32. And then the 
transformation into the natural logarithm is done 
according to: 
 
                                                                               (3) (logln +=
 
     Initially the result of the logarithm in base two is 
multiplied by the number 11357. The multiplication 
has been implemented by shift-left operations: 

∑ <<⇒ xshifter 2loglog_                            (4) 
     Considering that 11,357 may be represented as:  

02346101113 2222222211357 +++++++=  

the values of the shifts (x) will be then:  13, 11, 10, 6, 
4, 3, 2, 0. Next, a normalization operation consisting 
in fourteen right shifts carried out. Finally, the partial 
result is corrected by adding the amount of 8,617, 
which is equivalent to calculate ln (64x2048). 
     After the operations mentioned above are 
finished, data are ready for Mel Cepstrum coefficient 
calculation. 
 
3.2.3 Cepstrum coefficients 
Finally, the basic structure implemented to obtain the 
mel-cepstrum coefficients is shown in Figure 6. It 
consists of a counter to address the ROM memory, 
which contains the cosine values to compute the 
Cosine Transform, a set of registers for 
synchronization purposes and a substructure 
consisting of a multiplier and accumulator to 
compute a single coefficient (encircled within the 
dash line) in the scheme. This structure may be 
replicated as many times as coefficients to be 
computed in parallel.  
 
4   Performance evaluation 
The system was synthesized with the EDA tool 
Quartus II from Altera without using any pre-
designed component available in its libraries [9]. The 
device selection was automatically carried out by the 
tool, choosing in this case the EP1S20F484C5 from 
the Stratix family. Then, the results presented here 
may be optimized having into consideration the 
synthesis tool recommendations and the 
particularities of the device. Each block was first 
synthesized and the complete system after, following 
a bottom-up standard procedure.  
     The physical resource demand after synthesis is 
shown in Table 2. The pre-processing block requires 
more logic elements and memory bits than the 
feature extraction block. However, this last one 
demands more DSP units because it has to do more 
arithmetic computations. It may be seen that the 
complete system fits in the selected device. Extra 
resources are still available, except for logic 
elements, which are almost finished.  
     The performance results in terms of frequency 
and power dissipation are shown in Table 3. In this 
table the results for clk1 and clk2 used in the frame 
overlapping sub-block, and for clk that controls the 
feature extraction block are evaluated. The results in 
frequency obtained for the stand-alone blocks and 
the complete system synthesis are very similar. 
Concerning power dissipation, it can be noticed that 
the consumption of the pre-processing stage is larger 
than the feature extraction one. 

8617)11357*2
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   Fig. 6. Mel Cesptrum Coefficients Block Diagram 
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6,033 72 48 42 

Complete 

System 
18,340 29 4,321 52 

                         Table 2. Resources demanded 
F.Max (MHz) Power(mw) 

 
clk1 clk2 clk Internal I/O Total 

Pre-

processing 
269.47 99.74  502.74 9.43 512.17 

Feature 

extraction 
  103.31 348.99 20.27 369.26 

Complete 

system 
244.34 97.64 102.63 2,346.82 81.13 2,427.95 

                        Table.3. Time and power 
  
4   Conclusions 
In this paper, a parameterized speech feature-
extraction design oriented to reusability as a core for 

the implementation of the server front-end for the 
Standard Aurora has been presented. The design may 
be used as part of a SoC to implement all parts of the 
standard. A re-scaling in the parameters will affect to 
RAM memory sizes and read/write accesses. ROM 
memories size and contents are to be calculated off-
line. The performance of the system can be 
considered sufficient for the application. 
Nevertheless, it can be improved using pre-designed 
library blocks from the design tool, at the cost of 
loosing design portability.  
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