
Towards Autonomic Computing Using Goal-Based Translation
Strategy in Heterogeneous Distributed Environments

POOIA LALBAKHSH MEHDI N.FESHARAKI

Department Of Computer Engineering
Islamic Azad University, Science & Research Campus

Ashrafi Esfahani Highway, Hesarak, Tehran
IRAN

Abstract: This paper presents a new architecture to implement autonomic features in complex heterogeneous
environments. This three-layer architecture model eliminates the need for a common shared language and heavy
global standards by using semantic negotiations between different layers. For this reason, a collection of high
level cognitive agents make specific policy based decisions and an adapting interface layer sends them to the
system elements. Using the received decisions and state information, each element tries to achieve the decision
(goal) by its capabilities and local knowledge. To provide such local knowledge and semantic based functionality,
we focused on dependability and its attributes as the key core of local autonomous and how they can affect the
initial goals: self-configuring, self-healing, self-optimizing and self-protecting. Local elements will accomplish
the goal by using the received state information and its dependability diagram. Such goal-based translation
strategy will provide a better scalability and flexibility for today and future heterogeneous changing distributed
environments and interwoven systems.

Key –Words: Autonomic computing, Self management, Distributed architecture, Dependability.

1. Introduction
Increasing the complexity of computing
environments and the need for appropriate support
and maintenance particularly in critical applications
such as e-commerce, military operations and real-
time services, forced us to handle new problems of
complexity, scalability and automatic management.
Moreover, the need for experts with extensive
knowledge to cover all aspects of such systems, the
costly system downtimes and the necessity of
continues service delivery [1] define great
management problems particularly in distributed
heterogeneous environments with thousands of
different components. Since we can not stop the
growing process of digital computing systems, we
have to find new ways of efficient management of
this complexity. IBM introduced the self-
management strategy to handle these challenges
which led to autonomic computing or AC for short
[2]. This new concept contains many important
features that help us to manage this growing process.
Autonomic computing is based on four main
concepts, namely:

1. Self - Configuring
2. Self - Healing
3. Self - Optimizing
4. Self -Protecting

 These four Selfs, form the body of an autonomic
system. A Self-Configured system can configure its
components automatically to adapt to different
conditions. Self-Healing property will automatically
discover, diagnose and correct faults and therefore,
protects the system against downtimes and service
failures. Self-Optimizing guarantees the optimal
functioning of the system by monitoring and
adapting the resources, and finally self-protecting
feature deals with the attacks against the system
which guarantees a safe and secure service delivery.
These four concepts are integrated expressions that
consist of many underlying requirements to justify
the desired conditions. We call these four concepts
as initial goals that can lead to achieving the final
goal or self-management.
 The paper will continue as follows:
The next session will review a detailed background
of autonomic computing and related works. In

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 65

section 2 we will take a look at heterogeneous
distributed environments and interwoven systems.
Then we focus on our strategy named goal-based
translation and its characteristics. High level
cognitive agents and their semantic negotiations will
be introduced as high level concepts of the strategy.
After clarifying the role of agents and the goal of
translation, we will describe the dependability
diagram of local elements as the underlying key to
achieve the initial and then final goal. Then, the
relations between four main concepts and the basic
dependability attributes will be described. Fig. 1 is a
global view of the proposed architecture. The high
level core has many semantic based agents that can
collect state information and drain the important
semantics from the overall state, and then deliver the
goal-based semantics to the components. These
components are different elements with different
languages with a local knowledge base. This local
knowledge will cooperate with the high level agents
to manage the component and lead it to achieve the
desired goal. This architecture will guarantee the
scalability and flexibility of the system. However
such model could be well suited to mach with the
current and future open standards

Fig. 1.Global view of the goal-based translation strategy

2. AC: Related Works and Basic
Concepts
Although many people tried to introduce some of the
features and characteristics of autonomic systems
and their basic concepts, there is still a long way to
implement a fully automated and self-managed
system in reality. There is a large range of AC
projects in academia and industry, but none of them
could fulfill all of the aspects of autonomic
environments. Here we take a brief look at some of
the important AC projects:

• Unity project and autonomic computing
toolkit [3] which tries to explore some of
the behaviors and relationships that will

allow complex configuring systems to self
manage.

• KX project [4], an attempt to inject AC
technology into legacy software systems
without any need to understand or modify
the code of the existing systems.

• Rainbow project [5,6], which investigates
the use of software architectural models at
runtime as the basis for the reflection and
dynamic adaptation.

• ROC project [7], investigates novel
techniques for building highly dependable
Internet services. ROC emphasized recovery
from failures rather than failure avoidance.

• DEAS project [8] that uses requirements
goal models as a foundation for designing
autonomic applications. Tasks such as self-
configuration, self-optimization, self-
healing and self protection are often
accomplished by switching at runtime to a
different system behavior.

• Astrolabe project [9], a new system to
automate self-configuration and self-
monitoring to control adaptation using a
system-wide hierarchical database which
evolves as the underlying information
changes.

 Many other AC projects are accomplished by
different universities and some corporations [10]
focusing on some specific challenges of these
systems. Although many of them are nice solutions,
we still need to have an efficient strategy to support
the overall adaptation, flexibility and the four initial
goals.
 In the heart of each autonomic system there is a
closed control loop with six main processes [2]:
Sensing, monitor, analyze, plan, execute and effect.
The sensors start the loop by collecting the
appropriate information and the effectors finish It by
effecting according to the execute process. Fig. 2
diagrammatically shows this closed control loop.
Each of the intermediate processes or engines can
communicate with the knowledge base. The monitor
observes the data collected from sensors and then
stores the distilled data in the knowledge base. The
analysis engine compares the data against the desired
sensor values also stored in the knowledge base. The
planning engine devises strategies to correct the
trends identified by the planning engine and the
execution engine finally adjusts parameters of the
managed element by means of effectors, and stores
the affected values in knowledge base.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 66

Fig. 2 Closed control loop of an autonomic system [2]

3. Challenges of Distributed
Heterogeneous Environments
Converging computing systems with other
applications increased the complexity and diversity
of computing environments. On the other hand, this
diversity introduces new challenges of maintenance
and support tasks. Two important examples are using
network based infrastructures in power-grids [11]
and network centric operations [12]. Complexity and
heterogeneity of these systems need a special
management strategy based on that specific field.
Using thousands of different components with
different architecture models, negotiation languages
and variety of vendors, needs an intelligent and
instantaneous management that can not be manually
accomplished. Fig. 3 shows a network centric
military environment with different warfare
components and sensors. These sensors and effectors
have different functionalities and operational
mechanisms. These ever changing heterogeneous
environments can not be manually managed.
Traditional management strategies would be time
consuming and inefficient in such critical mission
fields. Instead, an autonomic and efficient
management system is required to accomplish the
missions of such collaborative systems.

Fig. 3 A network centric military environment with

different warfare components.

 The growing use of distributed heterogeneous
systems and infrastructures in different applications,

forces us to answer many considerable management
problems. Some of these problems are:

1. Maintenance and management of different
components requires an extensive
knowledge [13].

2. Because of heterogeneity, negotiations
between components are difficult and
sometimes a kind of manual translation is
required [14].

3. Upgrade processes would be asymmetric,
time consuming, costly.

4. Because of the complexity and
heterogeneity, scalability is a great
challenge.

5. Online repairs and optimization processes
according to special policies are very
complicated, time consuming or sometimes
impossible [13].

6. The whole system is more than sum of its
parts. This is the nature of a complex
interwoven system [1].

 Answering these problems efficiently is very
important point in overall system performance.
Autonomic computing is trying to achieve this
improvement.
 In some cases, like heterogeneous networks and
heterogeneous multi-computer systems, an adapting
layer is used to adapt system core, with other
peripherals. For example in next generation
networks, the soft-switch adapting layer is used to
support flexibility [14]. This soft-switch adapting
layer contains variety of functions to support
different types of networked environment features.
 These examples imply the importance of the
adapting layer's rule in achieving an autonomic
system. We will also use this idea in our architecture,
together with some special strategies to gain the
initial and final goals of the autonomic computing.

4. Goal-Based Translation strategy:
a solution to heterogeneity and
scalability
Translation into a common shared language, can
improve portability and maintainability of complex
heterogeneous systems [14]. But this strategy is not a
comprehensive solution. To have a common shared
language all the entities of the system should
equipped with the language. It means that all the
vendors should agree with a standard language. If we
had such an agreement, we did not have any problem

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 67

with heterogeneity, better to say: we did not have
any heterogeneous system at all.
 The presented examples and current applications
show that, there is still a long way to have such an
extensive agreement. On the other hand, preparing
such global standards for today interwoven systems
is a very complicated challenge [15]. To face these
challenges, we proposed a goal-based translation
strategy in such systems. In this method, the main
goal is inferred from the higher levels and delivered
to the different components of the system. The
components then translate the final goal to their local
domain to accomplish the requested job. In this
architecture, not all the instruction should be
translated, and the desired goal is only inferred to
lower layers. All negotiations between layers are
semantic based and therefore can guarantee the
comprehensiveness and scalability of the overall
system without imposing a common shared
language.

4.1 A Layered model for heterogeneous
systems
To describe the goal-based strategy we first
introduce a layered model for a distributed
heterogeneous system. Fig. 4 shows a three-level
model with the following functionalities:
 The highest level contains a collection of
cognitive agents. These agents are aware of the
overall system state and important policies that
should be considered in the functional phase of the
system life cycle. These agents can sense
performance parameters of the system and then
select the best goals related to the policies. The
functionality of this multiagent layer is based on the
four initial goals of autonomic computing.
 The second layer is a simple layer only to
communicate with the base layer. This layer receives
the decided goal from the highest layer and sends it
to the base layer. This layer works as an adapting
interface.
 The base layer is the local layer. This layer may
contain different components with different
languages. These components do not have any
information about the upper layers or the overall
system state and policies. The local layer should be
able to accomplish the decided goals from
knowledge layer, by means of local decisions.

Fig. 4 Layered model, of an autonomic heterogeneous

system

Fig. 5 An autonomic distributed system

 Fig. 5 shows an autonomic distributed system.
Many different components are connected to a
network. The cognitive agents together with the
special knowledge bases form the knowledge level
of the system. These agents are monitoring the
overall system performance and critical states of the
system. The knowledge level is responsible to
guarantee the four initial goals: Self-configuring,
Self-healing, Self-optimizing and Self-Protecting.
The cognitive high level agents can not directly
conduct the peripherals. They just ask them to
increase or decrease some of the performance
parameters. Therefore, sensing, analyze and
monitoring processes of the closed control loop is
done by the cognitive agents in the knowledge level.
After accomplishment of these processes, the needed
goal will be determined. The selected goal will be
send semantically to the component and then the
component acts on it through its effectors. The
context of each goal is defined for each component
by its local functions and language. So the overall
system knows same contexts but in different
language. For example, in fig. 5 there are many
different nodes on the network, each with different
languages. For the whole system the meaning of self-
healing is detecting and correcting the faults. But
achieving self-healing in each node consist a

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 68

different process. Therefore an identical self healing
process can not be selected for both web server and
robot.

4.2 Dependability Diagram: the Low
Level Planning
After defining basic concepts and taxonomy of
dependable and secure computing by Avizienis and
his colleagues, dependability evaluation earned an
important role in critical mission operations and
related systems. Dependability and its attributes can
define important states of a system. The main
attributes of dependability is described in Fig. 6.

Fig. 6 Main Attributes of Dependability

 Dependability can be considered as the base of
each autonomic system. Most of the initial goals of
each autonomic system rely on the dependability and
its attributes. For example, a self-healed system
needs high levels of availability and reliability, or a
self-configured system would have a permissible
maintainability level. Evaluating dependability and
its attributes for any system is simple and follows a
special rule. So we can use these known concepts to
earn semi-known goals of the autonomic nature. The
small definitions of the main attributes are [16]:

• Availability: readiness for correct service.
• Reliability: continuity of correct service.
• Safety: absence of catastrophic

consequences on the user(s) and the
environment.

• Integrity: absence of improper system
alternations.

• Maintainability: ability to undergo
modifications and repairs.

 These attributes are the atomic measures of each
autonomic system, and each component should
achieve the requested goal by improvement of these
parameters. System vulnerabilities and threats can
decrease level of dependability attributes and
consequently the system performance. These
vulnerabilities should be recognized for each system
component.
 Having dependability attributes, affecting threats
for each attribute and the means to attain the overall

dependability of a system, we can define
dependability diagram for each system, subsystem or
component. Most of this information should be
prepared by the vendors. Fig. 7 shows a
dependability diagram for an interconnection
network. This diagram contains the dependability
attributes, vulnerabilities and treatment strategies
such as: preventive and tolerating strategies.

Fig. 7 Dependability Diagram for a Communication

Network

 The above diagram is summarized with the main
points only to describe the main features of
dependability diagram. The first level of the diagram
contains the main attributes of dependability. You
may add more attributes depending on the system
you are working on. The second level is the threat
level. This level should contain all of the possible
threats against the system attributes. The third level
consists of the tolerating strategies for each threat.
Finally the forth layer shows the preventive
strategies. According to the system, some of the
strategies in dependability diagram would contradict
each other. For example using firewalls to improve
safety may lead to availability deduction. The high
level policies should confirm the proper trade offs
[15].
 To describe such diagrams, these points should be
noticed:

• The system should be completely analyzed
to find the main dependability attributes.

• The vulnerability and threats for each
attribute should be determined.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 69

• According to each threat, the appropriate
treatment should be advised (preventive or
tolerating).

 Having such diagram, each low level component
should be only equipped with appropriate
information about the initial goals. So there is no
need to have identical shared language. The vendors
should prepare special strategies in the products in
their desired formats. But these strategies should
follow the concepts of the initial goals. Fig. 8 shows
an autonomic computer system with goal-based
translation strategy. The balloons are the resulted
data of each engine. The system has three layers. The
knowledge layer contains three engines: Monitor,
analyze and plan. In this scenario, the monitoring
engine detects attack situation and sends the state
information to the analyzing engine. This engine
infers the characteristics of the attack and then asks
the planning engine to perform the appropriate
actions. The planning engine prefers system to
increase the overall security level. This decision is
transmitted to all of the low level components. A
hard disk drive is one of these components. The
HDD execute engine tries to accomplish the decision
by HDD capabilities such as creating extra copies of
the critical data and data encryption. Other
peripherals also carry out the appropriate actions
depending on their structure and their dependability
diagram. The peripheral effectors then finalize the
process. Each engine is collaborating with the
knowledge base during the process.

Fig. 8 An autonomic computer system using goal-based

strategy

 According to this scenario, it is evident that goal-
based translation is not a revolutionary process and it
can be though as an evolutionary strategy. This
evolutionary nature is one of the best advantages of
the strategy, since it is not needed to change the
current infrastructures. For example, most of current
hard disk drives have built-in data encryption
feature, and they need only a light context translation
support.

5. Goal-Based Translation and Future
Interwoven Systems
The increasing complexity level of computer
systems will lead to huge interwoven system of
systems that are more heterogeneous and distributed
than current systems [1]. These systems will need
intelligent managements and supports that can not be
achieved by today management systems. This kind
of management will be based on semantic models to
support scalability and fast decision makings. Since
goal-based strategy is based on semantics and
context of the autonomic goals, it would be an
appropriate path to achieve the fully automated
environments. Power of this strategy is based on the
knowledge base behind it. Because of its dynamic
nature, the knowledge base is dynamically improved
making this strategy a learning model and a good
infrastructure to support the future interwoven
systems.

6. Conclusion
Goal-base translation strategy is based on a new
view of the autonomic systems that tries to answer
the complicated challenges of the heterogeneous
environment and interwoven systems and adapting
current infrastructures for future autonomic
environments. The three layered model of this
strategy supports the high level system policies and
low-level system attributes and capabilities to
achieve the final goal or self management. This
strategy will make an independent intelligent
knowledge cloud infrastructure for future distributed
systems. On the other hand, using a dynamic
knowledge base, an adapting interface layer and
semantic based negotiations can make learning,
scalable and adapting environment. Such
evolutionary environments are critical requirements
for the future generation of computing interwoven
systems.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 70

References:
[1] K. Hermann, G. Muhl, K. Geihs, Self
Management: The solution to complexity or just
another problem, IEEE Distributed systems
Online,Vol.6, No.1, 2005.

[2] A. Ganik, T. Corbi, The dawning of the
autonomic computing era, IBM systems
journal,Vol.42, No. 1, 2003, pp.5-18.

[3] D. Chess, A. Segal, I. Whalley, S. White, Unity:
experiences with a prototype autonomic computing
system, Proc.first IEEE Conf. on Autonomic
Computing, New York, NY, 2004, pp.140-147.

[4] G. Kaiser, J. Parekh, P. Gross, G. Valetto,
Kinesthetics eXtreme:an external infrastructure for
monitoring distributed legacy systems, Proc. 5th
Annual International Workshop on Active
Middleware Services, Seattle, WA, 2003, pp.22-31.

[5] S.W. Cheng, A. Huang, D. Garlan, B. Schmerl,
P. Steenkiste, Rainbow architecture-based self
adaptation with reusable infrastructure, IEEE
computer, Vol 37, No.10, 2004, pp.46-54.

[6] H.Yan, D. Garlan, B. Schmerl, J. Aldrich, R.
Kazman, DiscoTect : a system for discovering
architectures from running systems, Proc. 26th
ACM/IEEE international Conf. on Software
Engineering .Edinburgh, Scotland, 2004, pp.470-
479.

[7] D.A. Patterson, A. Brown, P. Broadwell, G.
Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E.
Kiciman, M. Merzbacher, D. Oppenheimer, N.
Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft,
Recovery-Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies. UC
Berkeley Computer Science Technical Report
UCB//CSD-02-1175, 2002.

[8] A. Lapouchinan, S. Liaskos, J. Mylopoulos, Y.
Yu, Towards requirements-Driven autonomic
systems design, Proc. design and evolution of
autonomic application sotware St.Louis, MO, 2005,
pp.45-51.

[9] K. Birman, R. Van Renesse, J. Kaufman, W.
Vogels, Navigating in the storm: using astrolabe for
distributed self configuration, monitoring and
adaptation, Proc. 5th Annual International Workshop

on Active Middleware Services, Seattle, WA, 2003,
pp.4-13.

[10] H.A. Muller, L. O'Brien, M. Klein, B. Wood,
Autonomic computing (Software Architecture
Technology; Carnegie Mellon University, 2006).

[11] M. Agarwal, et al. , Automate: enabling
autonomic applications on the grid, Proc. 5th
Autonomic Computing Workshop, Annual
International Workshop on Active Middleware
Services, Seattle, WA, 2003, pp.48-59.

[12] NCW Roadmap, (Defence publishing center;
department of defence, Canberra, ACT, 2005).

[13] M. Amin, Towards self-healing infrastructure
systems, IEEE. Computer Magazine Vol.33, No.8,
2000, pp.44–53.

[14] T. Gruber, A translation approach to portable
ontology specifications, Knowledge acquisition
Vol.5, No.2, 1993, pp.199-220.

[15] R. Sterritt, M. Parashar, H. Tianfield, R.
Unland, A concise introduction to autonomic
computing, Advanced engineering informatics
Vol.19, 2005, pp.181-187

[16] A. Avizienis, J. C. Laprie, B. Randell, C.
Landwehr, Basic concepts and taxonomy of
dependable and secure computing, IEEE
Transactions on Dependable and Secure Computing,
Vol.1, No.1, 2004, pp.11-33.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 71

	Key –Words: Autonomic computing, Self management, Distributed architecture, Dependability.

