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Abstract: - This paper discuss parallel distributed compensation (PDC) of nonlinear systems by Takagi-
Sugeno (T-S) fuzzy model, and presents the design of T-S PDC controller in every detail. The purposed 
approach is designed both using pole placement method (PPM) and linear quadratic regulator (LQR) optimal 
control method, and also improved in a way to obtain a better system response by using additional 
membership functions (MF) for error with different desired pole locations for each MF  for PPM and different 
design parameters for each MF for LQR. The applicability of this new method is also demonstrated on a 
detailed simulation. 
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1   Introduction 
     Conventional PID controllers constitute an 
important part at control systems due to their 
simplicity, low cost and effectiveness for linear 
systems. However conventional PID controllers are 
usually not effective if the industrial systems contain 
long dead times, nonlinear structures, higher orders, 
and uncertainties. Moreover, it has been widely 
verified that a fuzzy logic type controller can 
achieve a better performance for complex systems  
than conventional controllers (Yucelen, 2006).  

     Shortly, there are two common fuzzy models; 
mamdani model and Tagaki-Sugeno model. The 
Takagi–Sugeno (T–S) fuzzy model has taken more 
consideration especially after 80’s in research 
community. Main advantage of T-S model is that it 
can approach a function with using fewer rules. Also 
there are aforementioned design methodologies of T-
S model. Among all of these methodologies, fuzzy 
parallel distributed compensation design approach is 
the most attactive due to its conceptually simple and 
robust view (Wang 1995, Lin 2001, Arslan 2006), 
and it is suitable with using pole placement method 
and linear quadratic regulator optimal control . 

     In this paper, parallel distributed compensation 
(PDC) of nonlinear systems by Takagi-Sugeno (T-S) 
fuzzy model is discussed, the designing of T-S PDC 
controller is given in every detail. Moreover, an 
improved design approach is proposed to make T-S 
PDC controller better by adding error fuzzy sets. 

     The paper is organized in 5 sections. Section 2 
briefly gives a general knowledge about Takagi-
Sugeno fuzzy model, section 3 describes both pole 
placement method based and linear quadratic 
regulator based parallel distributed controller. At 
section 4, a complete design, a new improvement 
and a detailed simulation for a nonlinear system is 
given in 5 steps. Finally the paper is summarized 
and concluded at section 5. 
 

2   Takagi-Sugeno Fuzzy Model 
     The fundemental feature of T–S fuzzy model is 
that it can be used to model an affine nonlinear 
system (Yesil, 2000) by seperating them to linear 
local systems or subsystems. The T–S fuzzy model, 
proposed by Takagi and Sugeno, (Takagi 1985) is 
defined as in (1), where 1, 2... ,k z= . 

Model Rule k: 

IF 1 ( )p t is 1kM and … and ( )vp t is vkM ;    .                  
THEN ( ) ( ) ( )kkx t A x t B u t′ = +                                 (1) 

     Mij  represents the fuzzy set and  z  represents the 
number of IF-THEN rules. x and u represent the 
state vector and the input vector respectively 
(Taniguchi 1999). Equation 1 describes fuzzy IF-
THEN fules which locally represent linear input-
output relations of nonlinear systems (Wang 1995). 
p1(t)~pv(t) are the controllable states and/or the 
functions of the states. The complete fuzzy model 
can be given by using all linear subsystems. Given a 
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pair of  (x(t),u(t)),  the final output of the fuzzy 
system is inferred as in (2) and (3) (Takagi 1985, 
Taniguchi 1999); 
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where Mk j (xj(t)) is the grade of membership of xj(t) 
in Mkj. 

3   Parallel Distributed Compensation 
     Parallel distributed compensation or PDC is a 
design method for T–S fuzzy model. The first thing 
for verification of controller is to obtain T–S fuzzy 
model of nonlinear system. For each rule in T–S 
fuzzy model a linear controller is designed. Because 
of describing antecedent of T–S model with linear 
state equations, linear control theory can be used for 
designing the antecedent of fuzzy controller (Arslan 
2006). The controller at the end of design which is 
formed with fuzzy blending of each linear controller 
is a complete system controller or in other words is a 
nonlinear controller. 

IF 1 ( )p t is 1kM and … and ( )vp t is vkM ;    .                                   

THEN the subsystem is ( ) ( ) ( )kkx t A x t B u t′ = + ,            
THEN the controller is   ( ) ( )ku t K x t= −                  (4) 

     It is clear that the subsystem and the subsystem’s 
controller are both selected together for each fuzzy 
rule.  Hence the output of the fuzzy nonlinear 
controller can be given like in equation (5) (Wang 
1995). 
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     There are a variety of methods to select K gain 
matrix, but pole placement and linear quadratic 
regulator control techniques are the most effective 
and useful methods. They are both given in the 
following sections. 

3.1. Pole Placement Method 
     As it is well known, the closed-loop pole 
locations have a great importance for the behavior of 
a system. For a nonlinear system, which is modelled 
by using T–S fuzzy model, each linear subsystem’s 
behavior can be improved by using parallel 

distributed compensation plus pole placement 
method. As said before, PDC is the design technique 
for T–S fuzzy model, and pole placement obtains us 
to find gain matrix, K (Kuo 1999). Before using pole 
placement method, new closed-loop pole locations 
for each linear subsystems have to be decided. This 
method is described in (Yesil, 2000) in detail. 

3.2. Linear Quadratic Regulator 
     Linear quadratic regulator method is an optimal 
linear quadratic control method, which minimizes 
the following cost function (Cipriano 1997, Astrom 
1984): 

0

( )J x Qx u Ru dt
∞

′ ′= +∫                                                (6) 

R and Q matrices are performance index matrix and 
state-cost matrix respectively.  The matrices R and Q 
determine the relative importance of the error and 
the limits of the control signal. Before using LQR 
method, there is no need to decide new closed-loop 
pole locations but the R and Q matrices. A 
reasonable choice for these matrices is given by the 
Bryon’s rule (Franklin 2002); 
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where 21/ anx  is maximum acceptable value of nth 

state or function of states nx , and 21/ amu  is maximum 
acceptance limit of  mth  output’s control signal. In 
addition to these two methods, there are a variety of 
rules that can determine K gain matrix in parallel 
distributed compensation. But these two methods are 
the most effective methods and gives a systematic 
way for the TS fuzzy PDC controller design. How to 
use this two methods are given in detail in section 4. 

 

4   A Detailed Design and Simulation 
with a Nonlinear System 
     A nonlinear differantial equation is given in 
equation 9 and its state space equations is given in 
equations 10–13. 

2sin( ) .( )y y y y u′′ ′= − +                                            (9) 

1 2  ,     x y x y′= =                                                   (10) 

( ) ( ).

( )

x f x g x u

y h x

′ = +

=
                                                  (11) 
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[ ]1 0y x=                                                            (13) 

The MATLAB representation of this nonlinear 
differantial equation is given in figure 1. 
Nonlinearity in the system can also be understand 
from its responses to different references, also it is 
given in figure 2. In other words, this system is a 
nonlinear system due to 1sin( )x and 2

1 2.x x  terms. 
Thus, these terms will be important for T–S PDC 
design in the following section.  

 
Figure 1. Nonlinear System’s MATLAB Model 

 
Figure 2. Nonlinear System’s Responses to Different 

References 

4.1. Takagi-Sugeno Fuzzy PDC Model of The 
System and Proposed Controller for The 
System 
     In this section constructing T–S fuzzy PDC 
model of the nonlinear system and design 
methodology are given in detail step by step. 

Step 1 – Finding Membership Functions of  1sin( )x : 

     First, an interval for this nonlinear term is 
selected (equation 14). Then it is put to a smaller – 
bigger equation form to construct membership 
functions due to interval determined (equation 15 – 
16). After this, membership functions are selected as 
in equations 18 – 20 by using equation 17. 

[ ]1sin( ) / 3x π∈ ±                                              (14) 

1 1 1sin(( / 3) /( / 3)) sin( )x x xπ π ≤ ≤                        (15) 

1 1 10.8261 sin( )x x x≤ ≤                                        (16)  

1 2

1 1 1 1 1sin( ) .(0.8261 ) .x M x M x= +                               (17) 

1 2

1 11M M= −                                                           (18) 
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Graphically, membership functions can be 
represented as in figure 3. There is no negative part 
in figure 3, because this term will send to 
controller’s input with its absolute sign due to 
symmetric membership functions. 

 

Figure 3. Membership Functions of  1x  

Step 2 – Finding Membership Functions of  2

1 2.x x : 

     The same procedure in step 1 is repeated for this 
nonlinear term too. Related equations are given in 21 
– 27, and a most common membership function 
(triangular form) is selected in figure 4 to construct 
this term’s membership functions. 
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Figure 4. Membership Functions of  1 2.x x  

 

Step 3 – The T–S Fuzzy Model of The Nonlinear 
System: 

     What was done in step 1 and step 2, can be given 
with equation 28. To construct a function like in 28, 
we need 6 T–S fuzzy rules which are given in table 
1. 

1 1 1 2 1 3

1 2 11 1 2 12 1 2 13

2 1 2 2 2 3

1 2 21 1 2 22 1 2 32

( ) . . . . . . . . .

. . . . . . . . .M

f x M M A x M M A x M M A x

M M A x M M A x M A x

= + +

+ + +
      (28) 

 
Table 1. T–S Fuzzy Rules 

 

Rule 1: IF 1x  is 1

1M  and 1 2x x  is 1

2M , THEN 

11 11( ) ( ) ( )x t A x t B u t= +  

Rule 2: IF 1x  is 1

1M  and 1 2x x  is 2

2M , THEN 

12 12( ) ( ) ( )x t A x t B u t= +  

Rule 3: IF 1x  is 1

1M  and 1 2x x  is 3

2M , THEN 

13 13( ) ( ) ( )x t A x t B u t= +  

Rule 4: IF 1x  is 2

1M  and 1 2x x  is 1

2M , THEN 

21 21( ) ( ) ( )x t A x t B u t= +  

Rule 5: IF 1x  is 2

1M  and 1 2x x  is 2

2M , THEN 

22 22( ) ( ) ( )x t A x t B u t= +  

Rule 6: IF 1x  is 2

1M  and 1 2x x  is 3

2M , THEN 

23 23( ) ( ) ( )x t A x t B u t= +  
 

 

Step 4 – Transfer Functions and Pole Placement 
Design: 

     It is a necessity to know a good approximate of a 
transfer function for each subsystems for pole 
placement design. For rule 1, state matrix A matrix 
can be given in equation 29. Other state matrices can 
easily be written like in 29.  

State Matrix for Rule 1:     11

0 1

0.8261 0
A =

⎡ ⎤
⎢ ⎥⎣ ⎦

      (29) 
 

Transfer functions for these matrices can be found 
using equation 30, and also again transfer function 
for Rule 1 is given in equation 31. 

( ) 1( ) . .T s C s A Bλ −
= −                                               (30) 

Transfer Function for Rule 1:    11 ( ) 1/T s s=         (31) 
It is clear that all C and B matrices are equal to each 
other like in equation 12 and 13. 7 error membership 
functions (where error term is 

1 1d
ex x x= − ) are added 

to T–S fuzzy  to improve transient response and to 
obtain a faster response with less overshoot. These 
functions are given in figure 5 and controller 
diagram is given in figure 6. 
 

 
Figure 5. Membership Functions for Error 

 
Figure 6. Proposed T–S Controller for The 
Nonlinear System with Saturation of 3±  

In addition, there will be 6 rules for seven error 
membership functions, or in other words there will 
be 42 rules to make system’s control better. Some 
rules are given in table 2. 

Table 2. New T–S Fuzzy Rules 

Rule 1: If 1ex  is Z and 1x  is 1

1M  and 1 2.x x  is 1

2M , 

Then 1 1

1 1 1 2 2u k ex k x= +  

Rule 2: If 1ex  is Z and 1x  is 1

1M  and 1 2.x x  is 2

2M , 

Then 2 2

1 1 1 2 2u k ex k x= +  

… 

Rule 42: If 1ex  is PB and 1x  is 2

1M  and 1 2.x x  

is 3

2M , Then 24 24

24 1 1 2 2u k ex k x= +  

 

Necessary parameters for pole placement are given 
in table 3. Effectivity of adding 7 more membership 
functions can be seen from this table. First, desired 
poles’ settling time are selected as low as possible, 
and overshoot of these poles are selected as high as 
possible to obtain a faster transient response. Then 
for small values of error (in Z, PS or NS), poles with 
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a low overshoot and a higher settling time are 
selected to obtain a smooth response when reaching 
to referance value. The gain values are finally used 
in new T–S fuzzy rules which are given in table 2. 
 

Table 3. Necessary Parameters for Pole Placement 
e(t) Sub-systems Settling %OS Closed Loop Poles 

Z  
All 

 
1.00 s 

 
%1 

 
-4+1.882j 

 
-4-1.8824j

PS,  
NS 

 
All 

 
1.00 s 

 
%5 

 
-3.5+3.671j 

 
-3.5-3.671j

PM 
N
M 

 
All 

 
0.75 s 

 
%15 

 
-4+6.622j 

 
-4-6.622j 

PB, 
NB 

 
All 

 
0.50 s 

 
%25 

 
-6+13.62j 

 
-6-13.62j 

 

Step 5 – Linear Quadratic Regulator Design: 

     The nonlinear system given in at the beginning of 
section 4 has two states and one output. Thus, Q and 
R matrices become 2x2 and 1x1 matrices 
respectively due to the Byron’s rule. 

2

1

2

2

1 / 0

0 1/

x
Q

x
=
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                               (32) 

( )21 /R u=                                                            (33) 

To use advantage of 7 error membership functions 
like in PPM design, Q and R matrix parameters with 
error’s change is given in table 4. 

Table 4. Necessary Parameters for LQR 
e(t) Sub-systems x1 x2 u (maximum controller signal)

Z  
All 

 
0.05 

 
0.1 

 
Equal to reference 

PS,  
NS 

 
All 

 
0.02 

 
0.08 

 
2 times bigger than reference

PM 
N
M 

 
All 

 
0.01 

 
0.06 

 
3 times bigger than reference

PB, 
NB 

 
All 

 
0.005 

 
0.05 

 
4 times bigger than reference

 

An advantage of the quadratic optimal control over 
the pole-replacement method is that selecting x1 << 
x2 gives a better response for time delays, 
disturbances and measurement noise. In addition, 
LQR provides a easier systematic way of computing 
the state feedback control gain matrix K in table 2. 

4.2. Simulations 
     The simulation results for the system given in 
equation 9 is given in figures 7–12 for different 
types of controllers. CPID, CPIPD, FPPM, FLQR 
represent conventional PID controller, conventional 
PI plus PD controller, T–S PDC pole placement 
fuzzy controller, and T–S PDC linear quadratic 
regulator fuzzy controller respectively. 

 
Figure 7. Comparison of System Responses 

 
Figure 8. Comparison of Control Signals 

Here, all conventional controllers are tuned using a 
genetic algorithm to obtain best performance. As 
seen from figure 7, both fuzzy type controllers and 
conventional PIPD controller give a better response 
than conventional PID controller. Also FPPM 
controller gives a bit better response than other 
controllers. In addition,  figure 9 shows these 
controllers’ performance to a step disturbance. 

 
Figure 9. Comparison of System Responses with a 

Step Disturbance 

 
Figure 10. Comparison of System Responses with 

0.25 Seconds of Time Delay and a Step Disturbance 
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     In fact, all real industrial systems have time 
delays, disturbances and measurement noises. It is a 
necessity to research performance of these 
controllers for these type of systems. For this reason, 
figure 10 represents performance of these controller 
for the same system wıth 0.25 seconds of time delay 
and a step disturbance. FPPM controller does not 
give the same good performance on these type of 
systems. Moreover, CPIPD controller’s performance 
is adequate but it has a 16.7% overshoot. For figure 
10, FLQR clearly gets the best performance among 
all these three controllers. In addition, for a system 
with 0.50 seconds of time delay and a step 
disturbance (figure 11), FLQR gets the best 
performance again. 

 
Figure 11. Comparison of System Responses with 
0.50 seconds of Time Delay and a StepDisturbance 

 
Figure 12. Comparison of System Responses with 

Measurement Noise and Disturbance 

Figure 12 shows controller performances under 
measurement noise and a step disturbance. FLQR 
has an better ability to suppress measurement noise 
than other controllers. 

 

5   Conclusions 
     In this paper, a new efficient feedback controller 
using the capabilities of the fuzzy Takagi-Sugeno 
modeling based parallel distributed compensation 
and linear quadratic regulator was developed by 
representing a nonlinear plant with local system 
fuzzy sets and error (between reference and system’s 
output) fuzzy sets. The proposed method then 
compared with different controllers in order to 
verify the effectiveness of this approach for affine 

nonlinear and/or uncertain systems. Moreover, a 
complete design method is given in every detail to 
make the proposed approach more applicable. This 
new approach has been shown to be very effective 
through simulations, and it is depicted that this 
method gives robust system responses for nonlinear 
systems that include time delay, measurement noise 
and disturbances. The successful simulations enable 
to apply this control approach to real time control 
systems. 
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