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Abstract : - We present in this paper a new approach, to check the stability robustness of discrete-time systems 
under nonlinear perturbations. The systems are composed of a linear constant part perturbed by an additive 
nonlinearity. The unique information about the nonlinearity is that it satisfies a quadratic constraint. 

Our objective is to design a state feedback control law that maximizes the bound on the nonlinearity which 
the system can tolerate without destroying its stability. All results are obtained within the framework of a 
Genetic Algorithm (GA). The effectiveness of the method is illustrated through an example. 
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1   Introduction 
The analysis of stability robustness of linear invariant 
systems subject to nonlinear perturbations has been 
of considerable interest to researchers for quite some 
time. Recently, Siljak and Stipanovic [1] and [2], 
presented a method of robust stability measure and 
stabilization for linear continuous time and discrete-
time systems under nonlinear perturbations using the 
linear Matrix   inequalities (LMI) approach, 
respectively. 

When applied to discrete-time systems, 
Stipanovic and Siljak’s method can be used only for 
single input systems and presents some structural 
restrictions on the positive definite matrix and the 
corresponding variables. Daniel.W.C and Guoping 
Lu [3], and  Zhiqiang Zuo, Jinzhi Wang and Huang 
[4] removed these drawbacks, and then derived new 
results in the same area of interest for the linear 
system with nonlinear perturbations. In comparison 
with existing methods, less conservative results have 
been obtained. 

Within the framework of this study, we deal with 
the same problem of robust quadratic stabilization of 
discrete-time linear system subjected to nonlinear 
uncertainties that satisfies a quadratic constraint. Our 
objective is to find an optimal feedback controller 
such that the closed-loop system is stable for all 
admissible parameter perturbations. 

A Genetic Algorithm Approach is then proposed 
to cast this problem into an optimization one 
involving nonlinear matrix inequalities, in fact, the 
main advantage of the use of genetic algorithm in 
optimization lies in improved possibilities of finding 
the global optimum even if we have to resolve 
nonlinear matrix inequalities.  

The paper is organized as follows. In section 2 
we present the formulation problem. Section 3 briefly 
recalls existing LMI methods for stabilizing 
nonlinear systems by state feedback control. We 
present in section 4, the proposed approach based on 
genetic Algorithm and observe the performances of 
such a method. The effectiveness of the proposed 
tuning method is illustrated in section 5 through a 
numerical example. 
 
 
2   Problem formulation   
We consider the case of a discrete-time linear system 
with nonlinear perturbations, the state representation 
is given by: 

))(,()()()1( kXkgkBUkAXkX ++=+         (1) 
where nkX ℜ∈)(  represents the state vector, 

mkU ℜ∈)(  represents the control input, nxnA ℜ∈  
is a constant matrix which may be instable, 

nxmB ℜ∈  is a constant matrix and the function 
))(,( kXkg  represents an unstructured uncertainty 
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which can be a linear or nonlinear function. We 
assume that, ))(,( kXkg satisfies the following 
quadratic constraint condition : 

)())(,()).(,( 2 FXFXkXkgkXkg TTT α<              (2) 
with +ℜ∈ *α , and F a constant matrix of suitable 
size. 

Our objective is to determine a state feedback 
control law:  

)()( kKXkU −=                                  (3) 
such that the system described by (1) remains stable 
and at the same time maximizes the domain of 
uncertainties measured by α , for which the system 
preserves its stability. 

The constraint (2) is equivalent to : 
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When we apply the feedback (3) to the system 
(1), we obtain the closed-loop system as : 

))(,()(

))(,()()()1(

kXkgkXA

kXkgkXBKAkX

+=

+−=+
     (5) 

where BKAA −= .                               (6) 
is the closed-loop system matrix.  

Motivated by Stipanovic and Siljak [2] we 
introduce the following definition: 
 
Definition 1: system (1) is robustly stabilized by the 
control law (3) with degreeα , if the equilibrium X=0 
of the closed-loop system (5) is globally 
asymptotically stable for all ))(,( kXkg  satisfying 
constraint (2). 

To study the stability of the closed-loop system, 
we consider the quadratic lyapunov function given 
for discrete-time systems by:  

)()())(( kPXkXkXV T=                                (7) 
 with  P  a positive definite matrix such that the 
difference )()1())(( kVkVkXV −+=∆  is negative 
definite for all     *
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Using the S-procedure of Yakubovich [7] 
[appendix-1], the inequality (8) with constraint (4) is 
equivalent to the existence of a matrix 0>P  and a 
scalar 0≥ε   such that : 

0
2

<
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IPAP
PAFFPAPA

TTT

ε
εα           (9) 

In LMI, the inequality (9) is a non strict LMI, 
since 0≥ε . For minimization problem, it is well-
known [Boyd et al.] [6] that the result of 
minimization under non strict LMI constraints is 
equivalent to that under strict LMI constraints. Thus 

0≥ε  is substituted by 0>ε . 
The relation (9) can be written in the following 

form: 

0~~
~~~ 2
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TTT
α                (10) 

with:      0,0,~
>>= ε

ε
PPP  

Obviously, inequality (10) is nonlinear for variables 
P~ and K  
 
 
3   LMI approaches 
Stipanovic and Siljak [2], Daniel and Goubing [3], 
Zuo, Wang and Huang [4] presented several 
approaches of robust stability and stabilization of 
discrete-time systems under nonlinear perturbations 
using the linear matrix inequalities (LMIs). 
 
 
3.1 Stipanovic and Siljak’s approach 
Stipanovic and Siljak [2] formulated this problem of 
robust stabilization with maximization of the 
robustness measure,  for a class of single input 
systems, in a convex optimization problem with 
constraints LMI where several tools associated with 
LMIs were used:  the S-procedure, the Schur 
complement… 

In [2], the robust stability problem of a discrete-
time system under nonlinear perturbation is 
formulated into a constrained convex optimization 
problem involving linear matrix inequalities (LMIs) 
to design a linear state feedback control law which 
stabilizes the closed loop system and maximizes the 
robustness measure given by α . 

To resolve this problem, and to contouring 
problems of non linearities Stipanovic and Siljak  
assume that the pair (A,B) is given in the controllable 
form and consider that for BKPL ~= , they impose 
many restrictions on the matrices LP,~

 and B . 
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where: 

1
~P is a )1( −n x )1( −n matrix ; 

( ) .;,...,,and~
212 ℜ∈=ℜ∈ in lllllP  

with :    
lP~K 1

2
−=                                                       (14) 

Other constraints were imposed on 
1

2
~and −PL   which are represented in LMI by : 
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These two constraints allowed restricting the gain 
K as follows: 

22
2 ..~

pl
TT KKllPKK <= − .                 (17) 

Stipanovic et Siljak formulated the optimization 

problem in the following form where 2

1
α

β =  ; 

minimize pl KK ++β   

Subject to : 0~ >P  

0

00
0~0~
00~~

~~~

<





















−
−−

−−
−−−

IF
PLAP

IPLAP
FLPALPAP TTTTT

β

0<







−

−
Il

lK
T

l                   (18) 

0~
2

>







PI
IK p     

Stipanovic et Siljak stated the following theorem: 
 
Theorem 1[2]: 

The system (1) is robustly stabilized by control 
law (3) if problem (18) is feasible. 
 
 
3.2 Daniel and Guoping’s approach 
The robust stabilization problem with maximization 
of the robustness measure using the LMIs, was 
extended in [3], by Daniel and Guoping for a class of 

multi-input and multi-output (MIMO) discrete-time 
nonlinear systems represented by this equation 

))(),(,()()()1( kUkXkgkBUkAXkX ++=+    (19) 
where nxnA ℜ∈ , nxmB ℜ∈  represent constant 
matrices, it is assumed here that the pair (A,B) is 
given in the controllable form. nkX ℜ∈)(  
represents the state vector, mkU ℜ∈)(  the control 
input and the function ),,( kUXg  an unstructured 
uncertainty which can be linear or nonlinear function 
of both state and control inputs. It is assumed that 

),,( kUXg , satisfies the following quadratic 
constraint condition : 

)(

))(),(,().(),(,(
2 HUHUFXFX

kUkXkgkUkXkg
TTTT

T

+≤ α
        (20) 

with +ℜ∈ *α  , H and F  constant matrices of 
suitable sizes. 

The authors propose a linear feedback 
KXU −=  which stabilizes the closed loop system 

described by : 
))(),(,()()1( kUkXkgkXAkX +=+        (21) 

The quadratic constraint is given by the relation 
(20), this constraint can be written in an equivalent 
form : 

)())(,()).(,( 2 GXGXkXkgkXkg TTT α≤           (22) 

with 
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Daniel and Guoping [3] stated the following 
theorem: 
 
Theorem 2[3]: 
The closed-loop system (21) is globally 
asymptotically stable with a maximum limit of 
nonlinearities α  if there exist matrices nxnQ ℜ∈  
and mxnL ℜ∈  such that the convex optimization 
problem  is feasible: 

minimize β  with : 
• *

+ℜ∈β  
• There exist nxnQ ℜ∈  and mxnL ℜ∈ , 

verifying the following constraints:  
0>Q  

0

0

0 <























−







−−









−−

I
HL
FQ

QIBLAQ
HL
FQ

BLQAQ
T

TTT

β

     (23) 

with: kQL = . 
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The gain is then given by: 1−= LQK  and 

robustness measure is given by 
β

α 1
= . 

 
 
4 Genetic Algorithm resolution 
Approach 
In this paragraph we will propose a new resolution 
approach of the Problem of robust stabilization with 
maximization of the robustness measure by solving 
nonlinear matrix inequality (NLMI) (10) using 
Genetic Algorithm. 

Genetic Algorithms have been shown to solve 
linear and nonlinear problems by exploring all 
regions of the state space and exponentially 
exploiting promising areas through mutation, 
crossover and selection operations applied to 
individuals in the populations (Michalewicz) [9]. 

GAs maintain and manipulate a family or 
population of solutions and implements a “survival of 
the fittest” strategy in their search for better 
solutions. 

We consider the discrete type quadratic lyapunov 
function (7).  

In order to guarantee the stability of the closed-
loop system given by the relation (5), we just require 
that the difference of ))(( kxV along the trajectory of 
the system is negative, i.e : 

 0))(())1(())(( <−+=∆ kxVkxVkxV  
We also consider the nonlinear matrix inequality 

given by the relation (10). 

0~~
~~~ 2

<










−
+−

IPAP
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TTT
α  

As known, inequality (10) is nonlinear for 
variables P~ and K . 

In this paper, the use of Genetic Algorithm is 
considered as being an optimization problem seeking 
for the maximum of the robustness measureα . 
For this intention, we have to define the variables of 
the problem and the fitness function to be 
maximized. 

Variables of the problem are elements of the 
feedback vector K  and elements of the matrix P~ . 

For each optimization variable ix , we correspond 
a gene. A chromosome is composed of several genes.  
A chromosome representation is needed to describe 
each individual in the population. In this problem K  
is an nm  elements vector, P~ is a vector with  

2
)1( +nn

  elements, all these elements constitute the 

variables of the problem. 
Therefore, the chromosome is a vector with   

nmnn
+

+
2

)1(
 elements, composed of coefficients 

of the feedback matrix and those of the symmetric 
positive definite matrix P~ . 

GA must be provided with an initial population 
and randomly generates solutions for the entire 
population. 

GA must respect constraints and chooses the 
feedback vector such that the relation given by the 
inequality (10) is verified; this relation is transformed 
as follows: 

0)()(),( 2
0 <+= ααα MKKMKM          (24) 

with : 
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GA seeks for a maximal value of )(Kα  
verifying the relation (24). 

The maximum value of  )(Kα  is then given by: 
{ }( )0,1))),(((max/max)(

1max <ℜ∈=
≤≤

+ KMK iNi
αλαα    (27) 

with Nii ≤≤1,λ , are the eigenvalues of the 
matrix ),( KM α , N  is the order of the matrix 

),( KM α . 
Fittest individuals that lead to a stable closed-

loop systems have a robustness measure 0>α ,  we 
apply to them the following scaled cost function:  
      α.bafitness +=                                          (28) 
where aand b  are positive scaling coefficients 
permitting to reduce or to increase variations between 
individuals.  

For the case where 0=α , there is no robustness 
margin. In this case, inferior individuals lead to an 
unstable closed-loop system thus if we apply to them 
a 0=fitness  , they will be systematically 
eliminated and will not survive at next generations, 
so we apply to them the following fitness: 

( )( )KMafitness i ,max αλ−=                   (29) 
with ni ≤≤1   

Reporting to the fact that best individuals have an 
increased chance of being selected, this second form 
of cost function lets the chance to inferior individuals 
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to survive and also reproduce at next generations in 
order to preserve the gene diversity on a generation.  

The proposed GA must respect another 
constraint, it searches for a symmetric positive 
definite matrix P~ , verifying the relation (24). 

The application of the genetic algorithm is given 
by the following steps:  
 
1- Define the variables of the problem and the cost 
function. 

The variables of the problem are the nmnn
+

+
2

)1(
 

elements of the chromosome composed of 
coefficients of the feedback matrix and those of the 
symmetric positive definite matrix P~  . 
The cost function is given by relations (28) and (29). 
 
2 - Genesis of the population: 

To test GA, one defines for each simulation:  
-  the number of parameters, 

      -  the number of bits used to code various parameters, 
- lower and upper bounds  (vlb, vub respectively) of 
each parameter, 
-  the stop condition, 
-  the maximum number of generations, 
-  the size of the initial population. 
 
3- Evaluation 

From the initial population, binary GA calculates 
for each chromosome: the state feedback K  , the 
matrix P~  and the cost function to maximize. 

 
4- Selection-elimination. 

GA classifies the chromosomes according to 
their fitness; the GA uses the Roulette wheel method 
to assign a probability of selection jP  to each 
individual j proportionally to its fitness value. 

 
5- Reproduction (crossover operator) 

The most common recombination operator is the 
one-point crossover method. A crossover point is 
selected along the chromosome and the genes up to 
that point are swapped between the two parents. A 
probability of crossover Pc will be fixed for each 
simulation, more it increases, more the population 
undergoes significant changes.  
 
6- Mutation (mutation operator) 

Mutation alters one individual to produce a 
single new solution. Binary mutation flips each bit in 
every individual in the population with probability Pm 
to be fixed for each simulation. This rate is generally 
weak since a high rate can lead to a sub-optimal 

solution. Generally allowed values are between 0,001 
and 0,03.  
 
7- Simulation Results  

GA finds after N generations, optimal values of 
the elements of the state feedback vector K , and the 
elements of the matrix P~  as well as the maximal 
costα . 
 
 
5   An example Study 
Let us consider a single-input discrete-time system 
represented by the following state equation  
 

))(,()(
1
0

)(
32

10
)1( kXkgkUkXkX +








+








−−

=+     (30) 

With nonlinear perturbation function that satisfies the 
quadratic constraint given by the relation (2): 

)())(,()).(,( 2 FXFXkXkgkXkg TTT α≤                        
where :   2IF = . 

The optimization Problem (18) using LMIs, 
proposed by Stipanovic and Siljak [1] and stated by 
the theorem 1, give a stabilizing feedback gain: 

[ ]8878.29252.1 −−=K  
and a maximal value of the degree of stability : 

.6015.0max =α  
with the eigenvalues of closed-loop system matrix 
A of (8) located at 2676.00561.0 i±− . 

These values were improved by solving the 
convex optimization problem (23) proposed by 
Daniel and Guoping [3] and given by the theorem 2. 
This method leads to a stabilizing feedback gain: 

[ ]32 −−=K   
and a maximal value of the degree of stability 

6179.0max =α  corresponding to : 









=

003.10
06184.2

Q  . 

We use the proposed method described in section 
4 and we represent each variable by a 16 bits length 
chromosome, the variables are searched in an interval 
[vlb,vub]. A one-point crossover and a one-bit 
mutation are applied with rates of 0.7 and 0.03 
respectively. The reproduction method used is the 
Roulette wheel where each chromosome is 
reproduced in the next generation proportionally to 
its fitness. The considered size of population in this 
study is of 500 individuals. The genetic algorithm 
converges after 158 generations.   

This leads to the following parameters of the 
feedback matrix gain: 
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[ ]2.9996-   2.001-=K  
and with the following value of the fitness function : 

6174.0max =α  . 
where : 









=

0.9994    0.0001
0.0001   0.3812 ~P  

As we can see the state feedback gain stabilises 
the system (30) and at the same time maximizes the 
field of uncertainties given byα , for which system 
preserves its stability. The obtained result shows a 
clear improvement of the maximal bound given by 
the proposed approach using Genetic Algorithm 
compared to the result given in [1] where several 
restrictions were imposed (improvement of 2.64 %). 
This result is nearly identical to the result given by 
the optimization approach proposed by Daniel and 
Guoping [2] (the difference is at the level of the 
fourth decimal).  
 
 
6   Conclusion 
In this work we proposed a new numerical method 
for the synthesis of a state feedback law that 
stabilizes the closed loop system and maximizes the 
robustness measure by solving nonlinear matrix 
inequality (NLMI). 

This method uses the optimization abilities of 
Genetic Algorithm and uses for its development the 
Lyapunov quadratic function. 

In the application developed in this paper, GA 
converged toward the optimal parameters values of 
the state feedback vector that stabilizes the closed 
loop system and maximizes the robustness measure.  

The approach developed by Stipanovic and Siljak 
in 2001 [1] using LMIs   is limited for a class of 
single-input and single-output (SISO) discrete-time 
nonlinear systems, more recent results using the 
LMIs, developed by Daniel et Guoping 2003 [2] and 
by Zhiqiang,, Jinzhi and Lin in 2004 [3] were applied 
for a class of multi-input and multi-output (MIMO) 
discrete-time nonlinear systems. These approaches 
present the disadvantage of imposing restrictions on 
the particular structure of the matrices ( Stipanovic 
and Siljak approach case) or necessitate much 
theoretical developments), whereas in the case of the 
proposed Genetic Algorithm approach, there isn’t 
any restriction imposed so results are more powerful. 
More over the proposed GA method is not limited for 
SISO discrete-time nonlinear systems, it can also be 

applied for a class of MIMO discrete-time nonlinear 
systems.  

 
 

7   Appendix 
A-1 :Lemme: The S-procedure of Yakubovich [6] 

)(0 xΩ et )(1 xΩ  two arbitrary quadratic forms of 
nℜ , then 0)(0 <Ω x   

for all { }0/nx ℜ∈  checking  0)(1 ≤Ω x , if and 
only if: There exists 0≥τ  such that: 

0)(.)( 10 <Ω−Ω xx τ , { }0/nx ℜ∈∀ . 
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