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Calculation of the Longitudinal Stability Derivatives of a Transport Aircraft
and Analysis of Longitudinal Modes
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Abstract: -In this study, the longitudinal stability derivatives of a transport aircraft have been calculated by modeling
the aircraft configuration and flight condition. The applying method is able to use for all sizes of civil and military
aircrafts. As a second step, the longitudinal motion of aircraft is investigated and the transfer functions of linearized
equations of motion have been obtained. Phugoid and short period modes have been investigated. Frequency-response
and transient-response analysis have been performed respectively by using Matlab Simulink.
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1 Introduction elevator and rudder control surfaces are determined and
During the dynamic modeling of aircrafts, stability shown in Fig. 1-7 respectively.

derivatives are generally obtained from the experimental P

or previous studies about the related aircraft. Therefore, ( ’ 3.94m

obtaining new derivatives of an aircraft whose -
derivatives have not calculated yet is difficult for 7.35m

researchers. The Advanced Aircraft Analysis (AAA) cam
program applies to most fixed wing configurations (civil
or military) and permit engineers to fast calculate Fig.1 Fuselage Geometry
stability derivatives straightforwardly [1-4]. In this

study, a longitudinal motion of a transport aircraft has ™~
been studied. This aircraft model approximately
represents the characteristic of Boeing 737-400. Firstly,
configuration modeling and result have been given.
Secondly, the transfer functions of longitudinal
linearized equations of motion have been obtained. }
Phugoid and Short Period modes have been investigated. -~ sgom - —
Finally, frequency-response and transient-response ~_ I
Analyses have been performed respectively. ]

Fig.2 Wing Geometry
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2 AAA Analyses

174m

2.1 Configuration Modeling in AAA
Configuration of the aircraft has been set in Geometry 3,98
Module of AAA. The aim of the Geometry module assist

the user to characterize the geometry of the fuselage,

wing, horizontal tail, vertical tail and work out related \
parameters [1-4]. After the parameters of the aircraft are ﬂJ—M 100m
set, corresponding plots have been obtained. 622m -
Configuration modeling parameters of the aircraft:

fuselage, wing, horizontal and vertical tails, aileron,

279m

Fig.3 Horizontal Tail Geometry


mailto:ugurozdemir@itu.edu.tr
mailto:ugurozdemir@itu.edu.tr
mailto:cafer@itu.edu.tr
mailto:cafer@itu.edu.tr
mailto:kavsaoglu@itu.edu.tr

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 107

2,76m
452m

642 m

Fig.4 Vertical Tail Geometry
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Fig.7 Rudder Geometry

These parameters are used in determining of stability
derivatives and transfer functions.

2.1 Results of the AAA

The steady-state flight conditions and longitudinal
stability derivatives are obtained by using AAA
programming the result of which are presented in Table
1.

Table 1 The calculation results
Steady State Flight Speed: U, = 537,0 km/hr

Airplane Current Weight: W =500000,0 N

current
Wing Area: S, = 105,00 m’
Steady State Pitch Attitude: 6,= 3,0 deg

Wing Mean Geometric Chord: C, =4,05m

Airplane Moment of Inertia about the
Y-body Axis: I, =2552412,6 2 kg-m’

Steady State Flight Mach Number: M, = 0,459
Dynamic Pressure in Steady State:

0,=9151,60 N/m’

Wing Loading at Current Flight Condition

W /S =4761,90 N/m’

Forward Acceleration Imparted to the Airplane
as a Result of a Unit Change in Speed:

X,=-0,0082s"

Forward Acceleration Imparted to the Airplane
due to Thrust as a Result of a Unit Change in
Speed: X;,=-0,0000 s

Forward Acceleration Imparted to the Airplane
as a Result of a Unit Change in Angle-of-attack:
X,=52770 m/ s>

Vertical Acceleration Imparted to the Airplane
as a Result of a Unit Change in Speed:
Z,=-0,1476 s’

Vertical Acceleration Imparted to the Airplane
as a Result of a Unit Change in Angle-of-attack:
Z,=-102,0394 m/s’

Vertical Acceleration Imparted to the Airplane
as a Result of a Unit Change in Rate of Change
of Angle-of-attack: Z ,=-0,6563 m/s

Vertical Acceleration Imparted to the Airplane
as a Result of a Unit Change in Pitch Rate:
Z,=-2,0160 m/s

Pitch Angular Acceleration Imparted to the
Airplane as a Result of a Unit Change in Speed:
M, =0,0023
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Pitch Angular Acceleration Imparted to the
Airplane due to Thrust as a Result of a Unit

Change in Speed: M, =0,0000 1/m.s

Pitch Angular Acceleration Imparted to the
Airplane as a Result of a Unit Change of Angle-
of-attack: M, =-2,7367 s>

Pitch Angular Acceleration Imparted to the
Airplane due to Thrust as a Result of a Unit
Change in Angle-of-attack: M = 0,0000 57
Pitch Angular Acceleration Imparted to the
Airplane as a Result of a Unit Change in Rate of
Change of Angle-of-attack: M ,=-0,1915 s
Pitch Angular Acceleration Imparted to the
Airplane as a Result of a Unit Change in Pitch
Rate: M, =-0,6106 s

Forward Acceleration Imparted to the Airplane
as a Result of a Unit Change in Elevator
Deflection Angle: X z=-0,1921 m/ s’
Vertical Acceleration Imparted to the Airplane
as a Result of a Unit Change in Elevator
Deflection Angle: Z, =-9,3490 m/ s®

Pitch Angular Acceleration Imparted to the
Airplane as a Result of a Unit Change in
Elevator Deflection Angle: M ,=-2,7284 s-*

3 Longitudinal Dynamics

In this section the longitudinal equations of motion are
derived. The parameters of phugoid and short modes are
obtained.

3.1 Longitudinal
Motions

The general longitudinal linear equations of aircraft with
the assumption of initial trimmed flight and the wings
level condition can be presented as follows [5];

Linearized Equations of

U=-g0fcoscosf + X U+ X; U+ X a+ Xz, )

W-Uq=-g0sin +Zu+Z,a+Z,a+Z,q+Zs0,
g=Mu+M;u+M,a+M; a+M,a+M,a+Mq+M,5,

where;

U = change of velocity in longitudinal flight;

a = change of angle of attack in longitudinal flight;
W = change of velocity in Z direction;

0, = elevator deflection;

Defining

where

g = change of angular velocity about Y axis.
6 = change of pitching angle

and taken for small

perturbations

into account the following,

W . .
Olz—:>W=0(U1 and WZO!UI,
1
equation (1) with zero initial conditions
represented in Laplace transform as follows:

can be

u(s)

(5= X, =Xy - X, geosd %) X,
B ’ B B B o a(s) |
Z, [sU,-2,)-2,] [-(@z,+U)s-gsing] o= 2
(M, +M) [Ms+M, +M, (s ~M,9) 5((:)) M,

5,(s)

2

Equation (2), the characteristic equation for longitudinal
motion can be obtained as:

(5= X, —X;) - X, geost,
CE= -z, [sU,-2,)-2,] [z, +U)s-gsing|=0
M, +M;) [Ms+M, +M, | (s>~ M,8)

€)

Substitutiong the parameters from Table 1, we can
calculate CE as:

491.5451S* +731.3739S* +1533.7677S?

+15.51755+20.5709=0
or factoring,

4)
491.5451(S* +1.4842S +3.1013)

(S? +0.0037S +0.0135)=0

Then from CE we can obtain the phugoid and short
periods modes parameters: the roots, natural frequencies,
damping ratios and the time required for the oscillation
to damp to one-half amplitude as follows:

0.693
Tl/zpm =

co,
Phugoid Short Period
£, =0.016 £, =0421
o, 01162724 o =1.1761739

pm S sp S

Tz, =372sec=621min | T, =1.026sec

These values are is quite typical.
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3.2 Longitudinal Transfer Functions for Elevator
Displacement

Each of the three longitudinal transfer functions can be

determined by using Cramer’s rule [5].

321 48 N,
5.(s) D,
Xs -X, gcosé,
Zs sU,-2,)-2,} {H(Z,+U))s+gsing}
N, My —{M,s+M,+M, } (s*~M,9)
D, (s=X,=X:) -X, gcosé,
-Z, sU,-2,)-2,} {AZ,+U,)s+gsinb}
~(M,+M;) —{M,s+M,+M, } (s>~ M,9)
6))
D, =Es* +Fs’ +Gs* + Hs +]1
where;
E=U -2,
F=-(U,-Z)X,+X; +M)-Z,-M, U, +Z)
G=(X,+ X )IM,U, -Z)+Z,+M, (U, +Z))}
+M,Z,-Z,X,+M,gsing —-(M, +M;)U,Z,)
H=gsing{M, +M; =M, (X, +X;)}
+gcosf{ZM; +(M, +M; YU, -Z,)}
+(My +M =X, U, +Z )+ Z, X M,
+(Xy + X )M, +M YU, +Z)-MZ,}
I=gcosd{(M, +M)Z, -Z (M, + M, )}
+gsing {(M, +M; )X, = (X, +X; )M, +M;)}
N,=As’+B,;s*+C,s+D,
where;
A=XsU,-2,)
B, =—XxlU, -Z, )M, +Z,-M, U, +Z)}+Z:.X,
C,=XgiM,Z,+ M, gsing —(M M YU, +Z,)}
+Z5{M,gcosd — X M} +M X, U, +Z,)
-U,-Z,)gcosb,}
D, =Xx(M, +M; )gsing —Z,M_ gcosOM;(Z,gcosb)
- X,gsin 6,
a(s) _N,
5(s) D
(=X, =X;) Xg gcosé,
-Z, Zy {~(Z,+U)s+gsind}
N, _ -(My+M;) M, (Sz—qu) ©6)
b B

N,=A;s’+B,s>+C,s+D,
where;
A =21s
B, = XaZy + Zx{-M = (X, + X; )1+ MU, +Z)
C,=Xz{U,+Z)M,+M;)-M Z}
+ZzM (X, +X;)
+Mg{=gsind - (U, +Z)(X, +X; )}
D, =—Xx(M,+M; )gsing —Z;,(M, +M; )g cos 6,
+ Mg (X, + X )gsing —Z,gcos 6}

323 20 N
5(s) D,
(s— X, = Xs) - X, X
-Z, U, -2)-2,}  Zs
N, |-(M,+M;) —{M;+M, +M;} M,
D o
(7

N,=A;s>+B,s+C,
where;
A=Z M, +M U, -2,)
B, =Xx{ZM,+U,-Z,)(M, +M; )}
+Z,{(M, +MTQ)—|\/|0.!(Xu +XT“)}
+M(5‘e{_za _(Ul _Zd)(xu +XTM)}
C,=X,{(M, +MTH)Zu -Z,(M, +MTU)}
+Z§e{_(Ma +MTU)(XU +XTU)+X0¢(MU +MTU)}
+Mg{Z,(X, +XTU)_vau}

From these equations, the following transfer functions
can be obtained:

u(s) -309,8021 5% - 5894632 5+ 18635,1454 S + 26624,3810

H . 491,5451 Sd +731,3738 S: + 1533, 7677 52 + 15,9175 5 + 20,5708

(®)
als) - 30,6727 87~ 13360986 5 - 6,4107 5 - 13,5486
GelS) B E z
Bel3) 491,54515 +731,3739 S +1533,7677 5 + 15,5175 5 + 20,5709 (9)
§(S) 13352502 57 - 840,5010 S - 14,5224

8lS) 4915451 st 731,3739 5 1533,7677 5%+ 155175 5 + 20,5708 (10)
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4 Frequency Domain Analysis

Following bode plots were drawn by using Matlab to
investigate aircraft longitudinal stability in depth as
discussed in ref. [6].
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is very small at the natural frequency of the short period
oscilation.

Fig.8 indicates that the amplitude of the
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Fig.9 Bode Plot of a(s)

.(s)
Fig.9 demonstrates that the earlier statement that the
phugoid oscillation takes place at almost constant angle
of attack.

System sys
Frequency (radiseck: 0.118
Magriuee (oB): 43.4 e plot of 8(s) /6,(<)

a0

erm: s

ys |
y (radisec). 176 |
(0E) 0745

Magnitud (dB)

50

-100
70

180

Phas (deg)

an

07 n0°

Frequency (radisec)

Fig.10 Bode Plot of 6(s).
5.(s)

It can be seen from the Bode plots, the longitudinal flight
is obviously imposed in phugoind mode owning to a
given elevator deflection as anticipated from the natural
freqencies and damping ratios of the aircraft.

5 Transient Response of the Aircraft

In this section, the open loop time domain responses to
an elevator deflection are plotted.

It is now necessary to define the positive deflection of
the elevator. Down elevator (stick forward) is defined as
“positive elevator” by NACA convention [7]. In the
simulation elevator deflection was held 5 deg between
100™ and 105™ second.

3, deflection
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Fig.12 Time response u vs. t

The short- period mode primarily consists of variations
in ¢and @ with very little change in the forward
velocity[7,8]. As seen in Fig. 12, the short-period
influence on u can not seen obviously, on the contrary
the short-period influence on & and @ is noticeable in
Figs. 14,16.

The phugoid mode oscillition primarily consist of
variations of #and u with almost a constant « [7,8]. In
accordance with this, in the Fig.12, phugoid mode
oscilition is dominant.
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Fig.13 Time response & vs.t

Short-period oscillation can be seen more clearly in
Fig.14.
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Fig.15 Time response vs. t

Short-period oscillation can be seen more clearly in
Figure 16.
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Fig.16 Short-period mode influence on &

4 Conclusion

In this study, the longitudinal stability derivatives of a
transport aircraft have been calculated by modeling the
aircraft configuration and a flight condition at Advanced
Aircraft Analysis (AAA) program. A longitudinal
motion of aircraft is investigated and the transfer
functions of the linearized equations have been obtained.
The phugoid and short periods modes and frequency and
transient-responses were analysed respectively, which
show that there are the low damping and the long lasting
oscillations in the longitudinal flight. For this reason, the
flight dynamics of the aircraft needs automatic control
systems design.
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