
A New Method for Quadtree Triangulation

REFIK SAMET, EMRAH OZSAVAS

Department of Computer Engineering, Ankara University, 06100, Ord.Prof.Dr.Sevket Kansu

Binasi, Tandogan, Ankara, TURKEY

s

Abstract: The aim of the study is to increase the accuracy of a terrain triangulation while maintaining or

reducing the number of triangles. To this end, a new non-trivial algorithm for quadtree triangulation is

proposed. The proposed algorithm includes: i) a resolution parameters calculation technique and ii) three error

metric calculation techniques. Simulation software is also devised to apply the proposed algorithm. For this

purpose a data file is processed via the software. Initially, a data file is read to obtain the elevation data of a

terrain. After that, 3D mesh is generated by using the original algorithm and the proposed algorithm. For each

of the algorithms, two states are analyzed: i) the state with fixed resolution parameters and ii) the state with

dynamically changing resolution parameters. For all of the cases, terrain accuracy value and number of

triangles of 3D meshes are calculated and evaluated. Finally, it is shown that dynamically changing resolution

parameters improve the algorithms’ performance.

Keywords: 3D Mesh, Quadtree Triangulation, Error Metric, Terrain Accuracy, Number of Triangles

1 Introduction
Interactive visualization of very large scale terrain

data imposes several efficiency problems. To best

exploit the rendering performance, the scene

complexity must be reduced as much as possible

without leading to an inferior visual representation.

Therefore, the geometric simplification must be

controlled by an approximation error threshold.

Additionally, different parts of the visible terrain

can be rendered at different Level-of-Detail (LOD)

to increase rendering performance [1].

Multiresolution terrain modeling is an efficient

approach to improve the speed of 3D terrain

modeling [2]. The concept of multiresolution

refers to the possibility of using different

representations of a spatial entity, having different

levels of terrain accuracy and complexity [3]. The

existing algorithms and models for constructing

multiresolution terrain models can be divided into

two categories: 1) Grid-based algorithms and 2)

Triangulated Irregular Network (TIN)-based

algorithms.

Grid-based algorithms include the quadtree

triangulation algorithm [4], [5] and the triangle

bisect algorithm [2]. The quadtree triangulation

algorithm constructs multiresolution models based

on a bottom-up approach which is easy to

implement [4]. The triangle bisect algorithm

constructs multiresolution models based on a top-

down approach [2]. Many algorithms have been

developed based on the triangle bisect algorithm,

such as the adaptive quadtree [6], the ROAMing

algorithm [7], Right TIN model [8], the longest

edge bisection algorithm [9] and dynamic adaptive

meshes [10]. The most common drawback of the

grid-based algorithms is that the polygonalization is

seldom optimal, or even near optimal. Large, flat

surfaces may require the same polygon density as

do small, rough areas [6].

TIN-based algorithms are inefficient because

generation of even modest size TINs requires

extensive computational effort. TINs are non-

uniform in nature, and consequently surface

following (e.g. for the animation of objects on the

surface) and intersection (e.g. for collision

detection, selection, and queries) are hard to handle

efficiently due to the lack of a spatial organization

of the mesh polygons [6]. TIN-based algorithms

can produce near optimal results in the number of

triangles needed to satisfy a particular error

threshold, but most do not operate in real-time [11].

Quadtree based multiresolution triangulations

have been shown to be exceptionally efficient for

grid digital terrain data [12]. The purpose of this

study is to increase the terrain accuracy while

maintaining or reducing the number of triangles in

order to reduce the graphics load, using quadtree

triangulation. We propose a dynamic calculation

technique for the resolution parameters and three

new error metric calculation techniques for the

subdivision criteria of the quadtree triangulation

algorithm. For each of the four techniques (the

original algorithm’s technique and three techniques

proposed in this paper), two states are analyzed: i)

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 242

the state with fixed resolution parameters and ii)

the state with dynamically changing resolution

parameters. For all of the cases, the terrain

accuracy and number of triangles values of 3D

meshes are calculated and evaluated. For this

purpose, the quadtree triangulation algorithm is

used on data files which include elevation data of a

terrain.

The rest of the paper is organized as follows: In

Section 2, previous related works in the field of

quadtree triangulation algorithm are discussed and

the original algorithm is described. Section 3

describes a resolution parameter calculation

technique and three new error metric calculation

techniques which are proposed in this paper. In

Section 4, the simulation procedure of the proposed

algorithm is described. Section 5 presents

implementation results and an in-depth analysis of

the terrain accuracy and number of triangles values

of the generated meshes. Finally, in Section 6,

conclusions for this study are presented.

2 Quadtree Triangulation

Algorithms
In grid-based algorithms, a terrain is also called a

height field because it consists of an NxM field of

height values. Height fields are usually stored as

NxM gray scale images. The color of each pixel of

the images represents the height value (0-255) for

the corresponding location in the terrain. These

height fields can be generated automatically or they

can come in the form of Digital Elevation Maps

(DEMs) that describe actual regions of the Earth’s

surface [13].

Terrain accuracy, process time, memory

requirement, support for real-time processing, and

number of triangles of the generated mesh are the

parameters to evaluate the techniques used in 3D

mesh generation step [13]. From a GIS point of

view the evaluation should be based on accuracy of

the approximated terrain and number of triangles

required to draw the terrain.

Terrain accuracy is a measure of how close the

approximated terrain resembles the original height

field. This measure is calculated using the vertical

distance between corresponding points in the

rendered terrain and the height field. Once the

vertical elevation difference has been computed for

each point in the height field, the actual terrain

accuracy as a percent is calculated as follows [13]:

),/)((*100 ttotalHeightotalDeltattotalHeighaccuracy −= (1)

where the totalHeight is the sum of the heights of

all the points in the height field and the totalDelta

is the sum of the vertical differences of the points.

The number of triangles in the 3D model is

easily counted.

The quadtree triangulation algorithms have

problems with terrain accuracy and the

triangulation of the 3D mesh is never optimal.

Large, flat surfaces may require the same polygon

density as do small, rough areas. This is due to the

sensitivity to localized, high frequency data within

large, uniform resolution areas of lower complexity

[6]. To increase the terrain accuracy, much more

triangles must be drawn in 3D mesh and this causes

extra graphics load that is undesirable for real-time

applications. For example, terrain data of an area of

50km
2
 with 5-meter ground elevation sampling

resolution is a grid in size of 10000x10000. After

triangulation the total number of triangles is about

200 million, what will cause problems in real-time

applications.

There are two construction approaches to

generate 3D mesh from a set of points on a regular

grid. One approach is performed bottom-up and the

other top-down to generate the hierarchy [12].

2.1 Bottom-Up Triangulation Approach
In the bottom-up construction approach, the input

grid is partitioned into atomic nodes of 3x3

elevation points. These nodes form the leaf nodes

[12] of a complete and balanced quadtree over the

entire input grid.

Fig.1. Bottom-Up triangulation

The main phase of this approach then consists of

coalescing all mergible nodes bottom-up to create

the quadtree.

2.2 Top-Down Triangulation Approach
The second approach is a top-down construction of

the hierarchy [12]. This approach starts by

representing the entire data set simplified by one

root node and splits nodes recursively as necessary

to approximate the data set. Nodes are never

merged.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 243

Fig.2. Top-Down triangulation

The structure used here is a tree where each

node has either zero or four children; nodes with

zero children are the leaf nodes. Each height level

of the tree represents a greater level of detail of the

terrain [14]. Creating the structure involves

descending the tree and, at each node, establishing

if the node is at the correct level of detail or if it

should be subdivided into four children, in which

case each child is then processed recursively [15].

2.3 Split Metric Calculation
The important part is deciding what the correct

level of detail should be at each node. The basic

idea is to render sections of the terrain at a higher

level of detail when they are close to the viewpoint

and at lower levels of detail when they are farther

away from the viewpoint. In addition to this, the

error of the terrain should be taken into account to

ensure that flat areas use fewer triangles since less

detail is required and bumpier areas use more

triangles to show more detail. Once error values are

stored, deciding on the correct level of detail for

each node is left up to a split metric calculation.

The following equation is used for the split metric

variable f [4]:

)),1,2*max(**/(dcCdLf = (2)

where L is the distance from the current node to the

viewpoint, C is the minimum global resolution, c is

the desired global resolution, d is the width of the

node and d2 is the error metric for the node. Here,

C and c are user-configurable parameters and L and

d are calculated in terrain vertices. If the condition

(f<1) is satisfied, that node is subdivided into four

children nodes. Calculation of the error metric d2 is

described below.

2.4 Calculation of the Error Metric d2 of

the Original Algorithm (Technique 1)
To calculate the error metric at a given node, the

original algorithm [4], [12], [14] determines the

elevation differences (error values) between the

actual terrain height and the displayed terrain

height at the centers of each of the four edges and

the two diagonals of the node [4]. Let us

demonstrate the calculation steps at a given node

(Fig.3) by using the original algorithm. Here, V(i),

i=0,1,...,8, is a vertex of a node. E(i) denotes the

error and H(i) denotes the height of the vertex V(i).

V(3) V(2) V(1)

 V(4) V(0) V(8)

 V(5) V(6) V(7)

Fig.3. Vertices of a quadtree node

Step 1. Determine the maximum of error values at

the two diagonals.

,0))),(2/))7()3(((

)),(2/))5()1(((max()(

=−+++

−+++=

iiHiHiHabs

iHiHiHabsiE

(3)

Step 2. Determine the error values at the centers of

each of the four edges.

,8,6,4,2),(2/))1()1((()(=−++−= iiHiHiHabsiE (4)

Step 3. The error of the node is the maximum of the

five error values.

,8,6,4,2,0)),(max(2 == iiEd (5)

The algorithm explained above is a fast and

moderately simple way to display height fields with

continuous levels of detail. However, this algorithm

suffers from problems of terrain accuracy and total

number of triangles. The number of triangles is

increased by increasing the terrain accuracy. The

increase in number of triangles causes extra

graphics load. It may be virtually impossible to

create 3D models in real-time for increasingly large

terrains. However, reduction in number of triangles

causes a loss in terrain accuracy.

3 The Proposed Quadtree

Triangulation Algorithm
The work presented here is based on the bottom-up

quadtree triangulation approach. The proposed

algorithm includes a technique to calculate the

resolution parameters and 3 different techniques to

calculate the d2 value for each node in the height

field.

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 244

3.1 Resolution Parameters Calculation

Technique
Before the calculation of the resolution parameters

for each node, the number of height intervals and

the start and the end height values of each height

interval should be determined, as shown in Table 3.

Step 1. Calculate the average height of 9 vertices of

a node (Fig.3).

∑
=

=
8

0

,9/)(
i

iHavg

(6)

The calculated avg value is the height of that node.

Step 2. Find the height interval number that has a

smaller start height than the node’s height and

greater end height than the node’s height. The

found height interval number is used as c value for

error metric (d2) calculation for that node.

Step 3. Find the level of the node. The level of a

node is calculated by taking the logarithm of the

width of the node. The C parameter for that node is

then equal to the level value and calculated as

follows:

)(= 2 dC log (7)

3.2 Calculation of Error Metric d2 of the

First Proposed Technique (Technique 2)
Step 1. Calculate the avg value (Eq. 6) of a node

(Fig.3).

Step 2. Calculate the differences between these 9

vertices and average of them.

,8,...,1,0),)(()(=−= iavgiHabsiE (8)

Step 3. Find the maximum difference value, it is the

error metric for that node.

,8,...,1,0)),(max(2 == iiEd (9)

3.3 Calculation of Error Metric d2 of the

Second Proposed Technique (Technique 3)
Step 1. Find the maximum of 9 vertices for a node

(Fig.3).

,8,...,1,0)),(max(max == iiH (10)

Step 2. Find the minimum of 9 vertices for a node.

,8,...,1,0)),(min(min == iiH (11)

Step 3. Calculate the difference between the

maximum and minimum values, it is the error

metric for that node.

min,max2 −=d (12)

3.4 Calculation of Error Metric d2 of the

Third Proposed Technique (Technique 4)
Step 1. Find the median value of 9 vertices for a

node (Fig.3). Median is the middle value of the

given numbers or distribution in their ascending

order. If the size of the numbers or distribution is

even, median is the average value of the two

middle elements [16].

,8,...,1,0)),((== iiHmedianmed (13)

Step 2. Calculate the differences between the

median value and 9 vertices.

8,...,1,0),)(()(=−= imediHabsiE (14)

Step 3. Find the maximum of the difference values,

it is the error metric for that node.

8,...,1,0)),(max(2 == iiEd (15)

4 Simulation Procedure
We have developed a simulator in C to generate the

mesh and evaluate the terrain accuracy and number

of triangles values of each of the error metric

calculation techniques. The OpenGL functions [17]

are used to draw the rendered terrain. The

simulation procedure is realized into three steps:

4.1 Step 1
In the initial step of the simulation, the elevation

data of a terrain are read from a raw file into a

matrix of size (terrain width)x(terrain height). This

matrix is called the height field matrix.

4.2 Step 2
The quadtree data structure is created to represent

terrains of size (2
N+1
)x(2

N+1
). In this tree structure

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 245

every node has either four or zero children nodes.

Nodes with zero children are the leaf nodes.

In order to represent the quadtree structure, a

numeric matrix of size (terrain width)x(terrain

height) is used. Each node in the tree corresponds

to one value in the quadtree matrix, which is the

subdivision metric. Calculating quadtree matrix

values involves recursively descending the tree and,

at each node, establishing if the node is at the

correct level of detail or if it should be subdivided

into four children, in which case each child is then

processed by the recursive algorithm.

After determining the height intervals, 3D

meshes are generated by using the original

algorithm and the proposed algorithm with fixed

and dynamically changing resolution parameters.

4.3 Step 3
Total triangle number and terrain accuracy values

are calculated for all of the 3D meshes. These

values are automatically saved to a text file.

While calculating the terrain accuracy, for

vertices that are corners of triangles the vertical

difference and thus delta value is equal to zero. To

calculate delta values for other vertices in the

rendered terrain, a bounding rectangle of all

triangles is determined in 2D and the plane

equation of all triangles is calculated [18]. The

plane equation is used to check if the vertex is

inside the triangle or not, for all vertices in the

bounding rectangle. If a vertex is inside a triangle

then its delta value is calculated.

5 Implementation Results and

Evaluation
We used two raw files ‘test1.raw’ and ‘test2.raw’

as data files to the simulator.

Table 1. File properties and parameters

File Name File Size
Viewpoint x

Location

Viewpoint y

Location

Viewpoint z

Location

test1.raw
513*513

(N=9)
200 200 170

test2.raw
2049*2049

(N=11)
200 200 170

5.1 Implementation 1: The Situation with

Fixed Resolution Parameters
Initially, the original algorithm and the three error

metric calculation techniques of the proposed

algorithm are applied to all of the nodes with fixed

parameter values. In this implementation, the

resolution parameters are taken from the user and

are not changed during the triangulation process.

To be able to compare the results of this

implementation with the results of Implementation

2, the numbers of triangles values should be equal

or nearly equal. Thus the terrain accuracy values

can be compared and evaluated. In order to have

much more opportunity for evaluation, we have

tested different values of resolution parameters.

The results for two data files are shown in Table 2.

Table 2. Results of fixed resolution parameters for

test1.raw and test2.raw

File Technique C Value c Value Number of Triangles
Terrain
Accuracy

1 1 20 152840 99,233%

1 1 13 63777 98,757%

1 2 4 25055 98,023%

2 3 9 71540 98,978%

2 3 5 24010 98,131%

2 2 5 10305 97,288%

3 4 5 163588 99,329%

3 3 5 96799 99,095%

3 2 4 27388 98,239%

4 5 5 106307 99,132%

4 3 5 37765 98,486%

te
st
1
.r
aw

4 3 3 13464 97,540%

1 2 6 922893 98,716%

1 2 4 492739 97,600%

1 2 2 140934 93,785%

2 2 8 490543 97,598%

2 2 5 211478 95,245%

2 3 3 175479 94,568%

3 2 7 1208153 99,021%

3 2 4 496183 97,605%

3 2 3 294356 96,304%

4 2 8 517045 97,640%

4 2 5 222984 95,338%

te
st
2
.r
aw

4 2 3 89489 91,628%

5.2 Implementation 2: The Situation with

Height Intervals
In this implementation, we used height intervals in

order to determine the desired global resolution

parameter c as described in Section 3.1. We tried

different numbers of height intervals, but in this

paper we present the results of the trials with 2, 4

and 8 height intervals separately in order to shorten

the presentation. Table 3 shows the height intervals

and corresponding c values.

Table 3. Height intervals and corresponding c

values
Number of Height

Intervals

Interval Start

Height-End Height

Corresponding c Value

0-127 2
2

128-255 1

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 246

0-63 4

64-127 3

128-191 2
4

192-255 1

0-31 8

32-63 7

64-95 6

96-127 5

128-159 4

160-191 3

192-223 2

8

224-255 1

In the triangulation process, for each node of the

height field, the interval number that has a smaller

start height than the node’s height and greater end

height than the node’s height is found. The found

height interval number is used as c value for error

metric (d2) calculation for that node. As shown in

Table 3, the corresponding c values and the start-

end height values of height intervals are in reverse

order. The reason for using such a reverse order is

to have greater c values, smaller f values and many

more triangles in the low parts of the terrain. The C

parameter is calculated for every node separately

during the triangulation process as described in

Section 3.1.

The results of the original algorithm and the

proposed algorithm for two data files are shown in

Table 4.

Table 4. Results of dynamically changing

resolution parameters for test1.raw and test2.raw

File test1.raw test2.raw

Number

of

Height

Intervals

Technique Number of Triangles
Terrain

Accuracy

Number of

Triangles

Terrain

Accuracy

1 24521 98,198% 80500 93,082%

2 9515 97,314% 192731 96,277%

3 27977 98,366% 192044 96,271%
2

4 12983 97,672% 83182 93,180%

1 62025 98,954% 464957 98,200%

2 27993 98,366% 191167 96,269%

3 70938 99,060% 468127 98,206%
4

4 38285 98,620% 203338 96,330%

1 168003 99,388% 1005405 99,064%

2 67189 99,058% 464555 98,199%

3 183876 99,440% 1005405 99,064%
8

4 102060 99,209% 483785 98,237%

5.3 Evaluations
The results show that dynamically changing

parameters make the four techniques give greater

terrain accuracy values with decreasing or nearly

same number of triangles. For example, Technique

1 gives 98.023% terrain accuracy with 25055

triangles by using fixed resolution parameters

(C=2, c=4) as shown in Table 2 and the same

technique gives greater (98.198%) terrain accuracy

with decreasing number of triangles (24521) by

using two height intervals (Table 4) for test1.raw.

This result is achieved also for the different values

of viewpoint locations, C and c parameters. We

propose three different techniques in order to show

the effect of using dynamically changing resolution

parameters much more powerful. According to

need and technical supports, a user may choose one

of the techniques to apply. The figures below show

the comparisons of the results of the four

techniques with dynamically changing resolution

parameters (the situation with height intervals)

against fixed resolution parameters (the situation

without height intervals) for two data files. Each

figure has two curved lines: the dashed ones show

the results of the situations with 2, 4 and 8 height

intervals and so have three points. The other lines

show the results of Implementation 1 and have

three points, each point shows the results of a fixed

resolution parameters group. Each figure shows the

results of one of the four techniques for one of the

files and so there are eight figures.

Fig.4. Results of the Technique 1 for test1.raw

Fig.5. Results of the Technique 2 for test1.raw

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 247

Fig.6. Results of the Technique 3 for test1.raw

Fig.7. Results of the Technique 4 for test1.raw

Fig.8. Results of the Technique 1 for test2.raw

Fig.9. Results of the Technique 2 for test2.raw

Fig.10. Results of the Technique 3 for test2.raw

Fig.11. Results of the Technique 4 for test2.raw

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 248

6 Conclusion
We have presented a new algorithm that includes a

technique to calculate the resolution parameters and

three new techniques to calculate the error metric

for the split operation of the quadtree triangulation.

This algorithm results in greater terrain accuracy,

with less triangles than the original quadtree

triangulation algorithm. In particular, the proposed

algorithm gives better results with increasing file

sizes (see Fig.4 – Fig.11). The most powerful

graphic card available for workstations at this time

can handle around 100 million triangles per second

with 256MB of graphic card memory. The

importance of the contribution of the proposed

algorithm becomes much more clear with

increasing file sizes. This is very important for real-

time applications because of the memory and

capacity possibilities.

We are currently investigating the effect of using

different numbers of height intervals. Finally, as a

future work, new techniques to calculate the error

metric may need to be improved and evaluated.

References
[1] F. Mello, E. Strauss, A. Oliviera, A. Gesualdi,

Non-Uniform Mesh Simplification Using

Adaptative Merge Procedures, 2000.

[2] B. Yang, W. Shi, O. Li, An integrated TIN and

Grid method for constructing multi-resolution

digital terrain models, International Journal of

Geographical Information Science, Vol. 19, No.

10, 2005, pp. 1019–1038.

[3] P. Magillo, V. Bertocci, Managing Large

Terrain Data Sets with a Multiresolution

Structure, 11
th
 International Workshop on

Database and Expert Systems Applications

Proceedings, 2000, pp. 894-898.

[4] S.Röttger, W. Heidrich, P. Slusallek and H.

Seidel, Real-Time Generation of Continuous

Levels of Detail for Height Fields, 1998.

[5] M. Lee, H. Samet, Navigating through triangle

meshes implemented as linear quadtrees, ACM

Transactions on Graphics, 19, 2000, pp. 79–

121.

[6] P. Lindstrom, D. Koller, W. Ribarsky, L.

Hodges, N. Faust, G. Turner, Real-time

continuous level of detail rendering of height

fields, Computer Graphics, 20, 1996, pp. 109–

118.

[7] M. Duchaineau, M. Wolinsky, D. Sigeti,

ROAMING terrain: real-time optimally

adapting meshes, Proceedings of IEEE

Visualization’97, Phoenix, Arizona (IEEE

Computer society), 1997, pp. 81–88.

[8] W. Evans, D. Kirkpatrick, G. Townsend, Right

triangular irregular networks, Technical Report

97-09, Department of Computer Science

(Tucson, Arizona; University of Arizona), 1997.

[9] P. Lindstrom, V. Pascucci, Terrain

simplification simplified: a general framework

for view-dependent out-of-core visualization,

IEEE Transactions on Visualization and

Computer Graphics, 8, 2002 pp. 239–254.

[10] P. Cignoni, F. Ganovelli, E. Gobbetti, F.

Marton, F. Ponchio, R. Scopigno, BDAM:

batched dynamic adaptive meshes for high

performance terrain visualization. Computer

Graphics Forum, 22, 2003, pp. 505–514.

[11] D. Cine, P. Egbert, Terrain Decimation

Through Quadtree Morphing, IEEE

Transactions on Visualization and Computer

Graphics, Vol. 7, 2001, pp. 62-69.

[12] R. Pajarola, Overview of Quadtree-based

Terrain Triangulation and Visualization, UCI

ICS Technical Report No. 02-01, 2002.

[13] M. Lanthier, D. Bradley, Evaluation of Real-

Time Continuous Terrain Level of Detail

Algorithms, Ottawa Carleton University,

Honours Project, 2003.

[14] R. Pajarola, Large Scale Terrain Visualization

Using The Restricted Quadtree Triangulation,

1998.

[15] R. Pajarola, M. Antonijuan and R. Lario,

QuadTIN: Quadtree based Triangulated

Irregular Networks, Proceedings IEEE

Visualization, 2002, pp. 395–402. IEEE

Computer Society Press.

[16] Math Median Tutorial, Web Page Source,

http://www.easycalculation.com/statistics/learn-

median.php

[17] R. Wright, M.Sweet, B. Lipchak, OpenGL

SuperBible, Third Edition, 2004.

[18] Plane Equation, MathWorld, Web Page

Source,

http://mathworld.wolfram.com/Plane.htm

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 249

