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Abstract: The aim of the study is to increase the accuracy of a terrain triangulation while maintaining or 

reducing the number of triangles. To this end, a new non-trivial algorithm for quadtree triangulation is 

proposed. The proposed algorithm includes: i) a resolution parameters calculation technique and ii) three error 

metric calculation techniques. Simulation software is also devised to apply the proposed algorithm. For this 

purpose a data file is processed via the software. Initially, a data file is read to obtain the elevation data of a 

terrain. After that, 3D mesh is generated by using the original algorithm and the proposed algorithm. For each 

of the algorithms, two states are analyzed: i) the state with fixed resolution parameters and ii) the state with 

dynamically changing resolution parameters. For all of the cases, terrain accuracy value and number of 

triangles of 3D meshes are calculated and evaluated. Finally, it is shown that dynamically changing resolution 

parameters improve the algorithms’ performance. 
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1   Introduction 
Interactive visualization of very large scale terrain 

data imposes several efficiency problems. To best 

exploit the rendering performance, the scene 

complexity must be reduced as much as possible 

without leading to an inferior visual representation. 

Therefore, the geometric simplification must be 

controlled by an approximation error threshold. 

Additionally, different parts of the visible terrain 

can be rendered at different Level-of-Detail (LOD) 

to increase rendering performance [1]. 

Multiresolution terrain modeling is an efficient 

approach to improve the speed of 3D terrain 

modeling [2].  The concept of multiresolution 

refers to the possibility of using different 

representations of a spatial entity, having different 

levels of terrain accuracy and complexity [3]. The 

existing algorithms and models for constructing 

multiresolution terrain models can be divided into 

two categories: 1) Grid-based algorithms and 2) 

Triangulated Irregular Network (TIN)-based 

algorithms.  

Grid-based algorithms include the quadtree 

triangulation algorithm [4], [5] and the triangle 

bisect algorithm [2]. The quadtree triangulation 

algorithm constructs multiresolution models based 

on a bottom-up approach which is easy to 

implement [4]. The triangle bisect algorithm 

constructs multiresolution models based on a top-

down approach [2]. Many algorithms have been 

developed based on the triangle bisect algorithm, 

such as the adaptive quadtree [6], the ROAMing 

algorithm [7], Right TIN model [8], the longest 

edge bisection algorithm [9] and dynamic adaptive 

meshes [10]. The most common drawback of the 

grid-based algorithms is that the polygonalization is 

seldom optimal, or even near optimal. Large, flat 

surfaces may require the same polygon density as 

do small, rough areas [6].  

TIN-based algorithms are inefficient because 

generation of even modest size TINs requires 

extensive computational effort. TINs are non-

uniform in nature, and consequently surface 

following (e.g. for the animation of objects on the 

surface) and intersection (e.g. for collision 

detection, selection, and queries) are hard to handle 

efficiently due to the lack of a spatial organization 

of the mesh polygons [6]. TIN-based algorithms 

can produce near optimal results in the number of 

triangles needed to satisfy a particular error 

threshold, but most do not operate in real-time [11]. 

Quadtree based multiresolution triangulations 

have been shown to be exceptionally efficient for 

grid digital terrain data [12]. The purpose of this 

study is to increase the terrain accuracy while 

maintaining or reducing the number of triangles in 

order to reduce the graphics load, using quadtree 

triangulation. We propose a dynamic calculation 

technique for the resolution parameters and three 

new error metric calculation techniques for the 

subdivision criteria of the quadtree triangulation 

algorithm. For each of the four techniques (the 

original algorithm’s technique and three techniques 

proposed in this paper), two states are analyzed: i) 
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the state with fixed resolution parameters and ii) 

the state with dynamically changing resolution 

parameters. For all of the cases, the terrain 

accuracy and number of triangles values of 3D 

meshes are calculated and evaluated. For this 

purpose, the quadtree triangulation algorithm is 

used on data files which include elevation data of a 

terrain. 

The rest of the paper is organized as follows: In 

Section 2, previous related works in the field of 

quadtree triangulation algorithm are discussed and 

the original algorithm is described. Section 3 

describes a resolution parameter calculation 

technique and three new error metric calculation 

techniques which are proposed in this paper. In 

Section 4, the simulation procedure of the proposed 

algorithm is described. Section 5 presents 

implementation results and an in-depth analysis of 

the terrain accuracy and number of triangles values 

of the generated meshes. Finally, in Section 6, 

conclusions for this study are presented. 

 

 

2   Quadtree Triangulation 

Algorithms 
In grid-based algorithms, a terrain is also called a 

height field because it consists of an NxM field of 

height values. Height fields are usually stored as 

NxM gray scale images. The color of each pixel of 

the images represents the height value (0-255) for 

the corresponding location in the terrain. These 

height fields can be generated automatically or they 

can come in the form of Digital Elevation Maps 

(DEMs) that describe actual regions of the Earth’s 

surface [13]. 

Terrain accuracy, process time, memory 

requirement, support for real-time processing, and 

number of triangles of the generated mesh are the 

parameters to evaluate the techniques used in 3D 

mesh generation step [13]. From a GIS point of 

view the evaluation should be based on accuracy of 

the approximated terrain and number of triangles 

required to draw the terrain. 

Terrain accuracy is a measure of how close the 

approximated terrain resembles the original height 

field. This measure is calculated using the vertical 

distance between corresponding points in the 

rendered terrain and the height field. Once the 

vertical elevation difference has been computed for 

each point in the height field, the actual terrain 

accuracy as a percent is calculated as follows [13]: 
 

),/)((*100 ttotalHeightotalDeltattotalHeighaccuracy −=  (1) 

 

where the totalHeight is the sum of the heights of 

all the points in the height field and the totalDelta 

is the sum of the vertical differences of the points. 

The number of triangles in the 3D model is 

easily counted. 

The quadtree triangulation algorithms have 

problems with terrain accuracy and the 

triangulation of the 3D mesh is never optimal. 

Large, flat surfaces may require the same polygon 

density as do small, rough areas. This is due to the 

sensitivity to localized, high frequency data within 

large, uniform resolution areas of lower complexity 

[6]. To increase the terrain accuracy, much more 

triangles must be drawn in 3D mesh and this causes 

extra graphics load that is undesirable for real-time 

applications. For example, terrain data of an area of 

50km
2
 with 5-meter ground elevation sampling 

resolution is a grid in size of 10000x10000. After 

triangulation the total number of triangles is about 

200 million, what will cause problems in real-time 

applications.  

There are two construction approaches to 

generate 3D mesh from a set of points on a regular 

grid. One approach is performed bottom-up and the 

other top-down to generate the hierarchy [12].  
 

 

2.1 Bottom-Up Triangulation Approach  
In the bottom-up construction approach, the input 

grid is partitioned into atomic nodes of 3x3 

elevation points. These nodes form the leaf nodes 

[12] of a complete and balanced quadtree over the 

entire input grid. 
 

 

 

 

 

 

 

Fig.1. Bottom-Up triangulation 
 

The main phase of this approach then consists of 

coalescing all mergible nodes bottom-up to create 

the quadtree. 
 

 

2.2 Top-Down Triangulation Approach 
The second approach is a top-down construction of 

the hierarchy [12]. This approach starts by 

representing the entire data set simplified by one 

root node and splits nodes recursively as necessary 

to approximate the data set. Nodes are never 

merged. 
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Fig.2. Top-Down triangulation 
 

The structure used here is a tree where each 

node has either zero or four children; nodes with 

zero children are the leaf nodes. Each height level 

of the tree represents a greater level of detail of the 

terrain [14]. Creating the structure involves 

descending the tree and, at each node, establishing 

if the node is at the correct level of detail or if it 

should be subdivided into four children, in which 

case each child is then processed recursively [15]. 
 

 

2.3 Split Metric Calculation 
The important part is deciding what the correct 

level of detail should be at each node. The basic 

idea is to render sections of the terrain at a higher 

level of detail when they are close to the viewpoint 

and at lower levels of detail when they are farther 

away from the viewpoint. In addition to this, the 

error of the terrain should be taken into account to 

ensure that flat areas use fewer triangles since less 

detail is required and bumpier areas use more 

triangles to show more detail. Once error values are 

stored, deciding on the correct level of detail for 

each node is left up to a split metric calculation. 

The following equation is used for the split metric 

variable f [4]: 
 

)),1,2*max(**/( dcCdLf =  (2) 

 

where L is the distance from the current node to the 

viewpoint, C is the minimum global resolution, c is 

the desired global resolution, d is the width of the 

node and d2 is the error metric for the node. Here, 

C and c are user-configurable parameters and L and 

d are calculated in terrain vertices. If the condition 

(f<1) is satisfied, that node is subdivided into four 

children nodes. Calculation of the error metric d2 is 

described below. 
 

 

2.4 Calculation of the Error Metric d2 of 

the Original Algorithm (Technique 1) 
To calculate the error metric at a given node, the 

original algorithm [4], [12], [14] determines the 

elevation differences (error values) between the 

actual terrain height and the displayed terrain 

height at the centers of each of the four edges and 

the two diagonals of the node [4]. Let us 

demonstrate the calculation steps at a given node 

(Fig.3)  by using the original algorithm. Here, V(i), 

i=0,1,...,8, is a vertex of a node. E(i) denotes the 

error and H(i) denotes the height of the vertex V(i). 
 

V(3)         V(2)         V(1) 

 

 

 V(4)       V(0)          V(8) 

                           

                                          

              

 V(5)       V(6)          V(7) 

                             
 

Fig.3. Vertices of a quadtree node 
 

Step 1. Determine the maximum of error values at 

the two diagonals. 
 

,0))),(2/))7()3(((

)),(2/))5()1(((max()(

=−+++

−+++=

iiHiHiHabs

iHiHiHabsiE
 

(3) 

 

Step 2. Determine the error values at the centers of 

each of the four edges. 
 

,8,6,4,2),(2/))1()1((()( =−++−= iiHiHiHabsiE  (4) 

 

Step 3. The error of the node is the maximum of the 

five error values. 
 

,8,6,4,2,0)),(max(2 == iiEd  (5) 

 

The algorithm explained above is a fast and 

moderately simple way to display height fields with 

continuous levels of detail. However, this algorithm 

suffers from problems of terrain accuracy and total 

number of triangles. The number of triangles is 

increased by increasing the terrain accuracy. The 

increase in number of triangles causes extra 

graphics load. It may be virtually impossible to 

create 3D models in real-time for increasingly large 

terrains. However, reduction in number of triangles 

causes a loss in terrain accuracy. 
 

 

3   The Proposed Quadtree 

Triangulation Algorithm 
The work presented here is based on the bottom-up 

quadtree triangulation approach. The proposed 

algorithm includes a technique to calculate the 

resolution parameters and 3 different techniques to 

calculate the d2 value for each node in the height 

field. 
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3.1 Resolution Parameters Calculation 

Technique 
Before the calculation of the resolution parameters 

for each node, the number of height intervals and 

the start and the end height values of each height 

interval should be determined, as shown in Table 3. 

 

Step 1. Calculate the average height of 9 vertices of 

a node (Fig.3). 
 

∑
=

=
8

0

,9/)(
i

iHavg  
 

(6) 

 

The calculated avg value is the height of that node. 

 

Step 2. Find the height interval number that has a 

smaller start height than the node’s height and 

greater end height than the node’s height. The 

found height interval number is used as c value for 

error metric (d2) calculation for that node. 
 

Step 3. Find the level of the node. The level of a 

node is calculated by taking the logarithm of the 

width of the node. The C parameter for that node is 

then equal to the level value and calculated as 

follows: 
 

)(= 2 dC log  (7) 

 

 

3.2 Calculation of Error Metric d2 of the 

First Proposed Technique (Technique 2) 
Step 1. Calculate the avg value (Eq. 6) of a node 

(Fig.3). 

 

Step 2. Calculate the differences between these 9 

vertices and average of them.  
 

,8,...,1,0),)(()( =−= iavgiHabsiE  (8) 

 

Step 3. Find the maximum difference value, it is the 

error metric for that node.  
 

,8,...,1,0)),(max(2 == iiEd  (9) 

 

 

3.3 Calculation of Error Metric d2 of the 

Second Proposed Technique (Technique 3) 
Step 1. Find the maximum of 9 vertices for a node 

(Fig.3). 
 

,8,...,1,0)),(max(max == iiH  (10) 

Step 2. Find the minimum of  9 vertices for a node. 

 

,8,...,1,0)),(min(min == iiH  (11) 

 

Step 3. Calculate the difference between the 

maximum and minimum values, it is the error 

metric for that node. 

 

min,max2 −=d  (12) 

 

 

3.4 Calculation of Error Metric d2 of the 

Third Proposed Technique (Technique 4) 
Step 1. Find the median value of 9 vertices for a 

node (Fig.3). Median is the middle value of the 

given numbers or distribution in their ascending 

order. If the size of the numbers or distribution is 

even, median is the average value of the two 

middle elements [16]. 

 

,8,...,1,0)),(( == iiHmedianmed  (13) 

 

Step 2. Calculate the differences between the 

median value and 9 vertices. 

 

8,...,1,0),)(()( =−= imediHabsiE  (14) 

 

Step 3. Find the maximum of the difference values, 

it is the error metric for that node. 

 

8,...,1,0)),(max(2 == iiEd  (15) 

 

 

4   Simulation Procedure 
We have developed a simulator in C to generate the 

mesh and evaluate the terrain accuracy and number 

of triangles values of each of the error metric 

calculation techniques. The OpenGL functions [17] 

are used to draw the rendered terrain. The 

simulation procedure is realized into three steps: 
 

 

4.1 Step 1 
In the initial step of the simulation, the elevation 

data of a terrain are read from a raw file into a 

matrix of size (terrain width)x(terrain height). This 

matrix is called the height field matrix. 
 

 

4.2 Step 2 
The quadtree data structure is created to represent 

terrains of size (2
N+1
)x(2

N+1
). In this tree structure 
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every node has either four or zero children nodes. 

Nodes with zero children are the leaf nodes.  

In order to represent the quadtree structure, a 

numeric matrix of size (terrain width)x(terrain 

height) is used. Each node in the tree corresponds 

to one value in the quadtree matrix, which is the 

subdivision metric. Calculating quadtree matrix 

values involves recursively descending the tree and, 

at each node, establishing if the node is at the 

correct level of detail or if it should be subdivided 

into four children, in which case each child is then 

processed by the recursive algorithm.  

After determining the height intervals, 3D 

meshes are generated by using the original 

algorithm and the proposed algorithm with fixed 

and dynamically changing resolution parameters. 
 

 

4.3 Step 3 
Total triangle number and terrain accuracy values 

are calculated for all of the 3D meshes. These 

values are automatically saved to a text file. 

While calculating the terrain accuracy, for 

vertices that are corners of triangles the vertical 

difference and thus delta value is equal to zero. To 

calculate delta values for other vertices in the 

rendered terrain, a bounding rectangle of all 

triangles is determined in 2D and the plane 

equation of all triangles is calculated [18]. The 

plane equation is used to check if the vertex is 

inside the triangle or not, for all vertices in the 

bounding rectangle. If a vertex is inside a triangle 

then its delta value is calculated. 
 

 

5 Implementation Results and 

Evaluation 
We used two raw files ‘test1.raw’ and ‘test2.raw’ 

as data files to the simulator. 

 

Table 1.  File properties and parameters 

File Name File Size 
Viewpoint x 

Location 

Viewpoint y 

Location 

Viewpoint z 

Location 

test1.raw 
513*513 

(N=9) 
200 200 170 

test2.raw 
2049*2049 

(N=11) 
200 200 170 

 

 

5.1 Implementation 1: The Situation with 

Fixed Resolution Parameters 
Initially, the original algorithm and the three error 

metric calculation techniques of the proposed 

algorithm are applied to all of the nodes with fixed 

parameter values. In this implementation, the 

resolution parameters are taken from the user and 

are not changed during the triangulation process. 

To be able to compare the results of this 

implementation with the results of Implementation 

2, the numbers of triangles values should be equal 

or nearly equal. Thus the terrain accuracy values 

can be compared and evaluated. In order to have 

much more opportunity for evaluation, we have 

tested different values of resolution parameters. 

The results for two data files are shown in Table 2. 

 

Table 2.  Results of fixed resolution parameters for 

test1.raw and test2.raw  
 

File Technique C Value c Value Number of Triangles 
Terrain 
Accuracy 

1 1 20 152840 99,233% 

1 1 13 63777 98,757% 

1 2 4 25055 98,023% 

2 3 9 71540 98,978% 

2 3 5 24010 98,131% 

2 2 5 10305 97,288% 

3 4 5 163588 99,329% 

3 3 5 96799 99,095% 

3 2 4 27388 98,239% 

4 5 5 106307 99,132% 

4 3 5 37765 98,486% 

te
st
1
.r
aw

 

4 3 3 13464 97,540% 

1 2 6 922893 98,716% 

1 2 4 492739 97,600% 

1 2 2 140934 93,785% 

2 2 8 490543 97,598% 

2 2 5 211478 95,245% 

2 3 3 175479 94,568% 

3 2 7 1208153 99,021% 

3 2 4 496183 97,605% 

3 2 3 294356 96,304% 

4 2 8 517045 97,640% 

4 2 5 222984 95,338% 

te
st
2
.r
aw

 

4 2 3 89489 91,628% 

 

5.2 Implementation 2: The Situation with 

Height Intervals 
In this implementation, we used height intervals in 

order to determine the desired global resolution 

parameter c as described in Section 3.1. We tried 

different numbers of height intervals, but in this 

paper we present the results of the trials with 2, 4 

and 8 height intervals separately in order to shorten 

the presentation. Table 3 shows the height intervals 

and corresponding c values. 

 

Table 3.  Height intervals and corresponding c 

values 
Number of Height 

Intervals 

Interval Start 

Height-End Height 

Corresponding c Value 

0-127 2 
2 

128-255 1 
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0-63 4 

64-127 3 

128-191 2 
4 

192-255 1 

0-31 8 

32-63 7 

64-95 6 

96-127 5 

128-159 4 

160-191 3 

192-223 2 

8 

224-255 1 

 

In the triangulation process, for each node of the 

height field, the interval number that has a smaller 

start height than the node’s height and greater end 

height than the node’s height is found. The found 

height interval number is used as c value for error 

metric (d2) calculation for that node. As shown in 

Table 3, the corresponding c values and the start-

end height values of height intervals are in reverse 

order. The reason for using such a reverse order is 

to have greater c values, smaller f values and many 

more triangles in the low parts of the terrain. The C 

parameter is calculated for every node separately 

during the triangulation process as described in 

Section 3.1.  

The results of the original algorithm and the 

proposed algorithm for two data files are shown in 

Table 4. 

 

Table 4.  Results of dynamically changing 

resolution parameters for test1.raw and test2.raw 

File  test1.raw test2.raw 

Number 

of 

Height 

Intervals 

Technique Number of Triangles 
Terrain 

Accuracy 

Number of 

Triangles 

Terrain 

Accuracy 

1 24521 98,198% 80500 93,082% 

2 9515 97,314% 192731 96,277% 

3 27977 98,366% 192044 96,271% 
2 

4 12983 97,672% 83182 93,180% 

1 62025 98,954% 464957 98,200% 

2 27993 98,366% 191167 96,269% 

3 70938 99,060% 468127 98,206% 
4 

4 38285 98,620% 203338 96,330% 

1 168003 99,388% 1005405 99,064% 

2 67189 99,058% 464555 98,199% 

3 183876 99,440% 1005405 99,064% 
8 

4 102060 99,209% 483785 98,237% 

 

 

5.3 Evaluations 
The results show that dynamically changing 

parameters make the four techniques give greater 

terrain accuracy values with decreasing or nearly 

same number of triangles. For example, Technique 

1  gives 98.023% terrain accuracy with 25055 

triangles by using fixed resolution parameters 

(C=2, c=4) as shown in Table 2 and the same 

technique gives greater (98.198%) terrain accuracy 

with decreasing number of triangles (24521) by 

using two height intervals (Table 4) for test1.raw. 

This result is achieved also for the different values 

of viewpoint locations, C and c parameters. We 

propose three different techniques in order to show 

the effect of using dynamically changing resolution 

parameters much more powerful. According to 

need and technical supports, a user may choose one 

of the techniques to apply. The figures below show 

the comparisons of the results of the four 

techniques with dynamically changing resolution 

parameters (the situation with height intervals) 

against fixed resolution parameters (the situation 

without height intervals) for two data files. Each 

figure has two curved lines: the dashed ones show 

the results of the situations with 2, 4 and 8 height 

intervals and so have three points. The other lines 

show the results of Implementation 1 and have 

three points, each point shows the results of a fixed 

resolution parameters group. Each figure shows the 

results of one of the four techniques for one of the 

files and so there are eight figures. 
 

 
 

Fig.4. Results of the Technique 1 for test1.raw 
 

 
 

Fig.5. Results of the Technique 2 for test1.raw 
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Fig.6. Results of the Technique 3 for test1.raw   

              
 

 
 

Fig.7. Results of the Technique 4 for test1.raw 

 

 

 
 

Fig.8. Results of the Technique 1 for test2.raw                   

 

 

 

 

 

 
 

Fig.9. Results of the Technique 2 for test2.raw 

 

 

 
 

Fig.10. Results of the Technique 3 for test2.raw  

                 

 

 
 

Fig.11. Results of the Technique 4 for test2.raw 
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6   Conclusion 
We have presented a new algorithm that includes a 

technique to calculate the resolution parameters and 

three new techniques to calculate the error metric 

for the split operation of the quadtree triangulation. 

This algorithm results in greater terrain accuracy, 

with less triangles than the original quadtree 

triangulation algorithm. In particular, the proposed 

algorithm gives better results with increasing file 

sizes (see Fig.4 – Fig.11). The most powerful 

graphic card available for workstations at this time 

can handle around 100 million triangles per second 

with 256MB of graphic card memory. The 

importance of the contribution of the proposed 

algorithm becomes much more clear with 

increasing file sizes. This is very important for real-

time applications because of the memory and 

capacity possibilities. 

We are currently investigating the effect of using 

different numbers of height intervals. Finally, as a 

future work, new techniques to calculate the error 

metric may need to be improved and evaluated. 
 

References 
[1] F. Mello, E. Strauss, A. Oliviera, A. Gesualdi, 

Non-Uniform Mesh Simplification Using 

Adaptative Merge Procedures, 2000. 

[2] B. Yang, W. Shi, O. Li, An integrated TIN and 

Grid method for constructing multi-resolution 

digital terrain models, International Journal of 

Geographical Information Science, Vol. 19, No. 

10, 2005, pp. 1019–1038. 

[3] P. Magillo, V. Bertocci, Managing Large 

Terrain Data Sets with a Multiresolution 

Structure, 11
th
 International Workshop on 

Database and Expert Systems Applications 

Proceedings, 2000, pp. 894-898. 

[4] S.Röttger, W. Heidrich, P. Slusallek and H. 

Seidel, Real-Time Generation of Continuous 

Levels of Detail for Height Fields, 1998. 

[5] M. Lee, H. Samet, Navigating through triangle 

meshes implemented as linear quadtrees, ACM 

Transactions on Graphics, 19, 2000, pp. 79–

121. 

[6] P. Lindstrom, D. Koller, W. Ribarsky, L. 

Hodges, N. Faust, G. Turner, Real-time 

continuous level of detail rendering of height 

fields, Computer Graphics, 20, 1996, pp. 109–

118. 

[7] M. Duchaineau, M. Wolinsky, D. Sigeti, 

ROAMING terrain: real-time optimally 

adapting meshes, Proceedings of IEEE 

Visualization’97, Phoenix, Arizona (IEEE 

Computer society), 1997, pp. 81–88. 

[8] W. Evans, D. Kirkpatrick, G. Townsend, Right 

triangular irregular networks, Technical Report 

97-09, Department of Computer Science 

(Tucson, Arizona; University of Arizona), 1997. 

[9] P. Lindstrom, V. Pascucci, Terrain 

simplification simplified: a general framework 

for view-dependent out-of-core visualization, 

IEEE Transactions on Visualization and 

Computer Graphics, 8, 2002 pp. 239–254. 

[10] P. Cignoni, F. Ganovelli, E. Gobbetti, F. 

Marton, F. Ponchio, R. Scopigno, BDAM: 

batched dynamic adaptive meshes for high 

performance terrain visualization. Computer 

Graphics Forum, 22, 2003, pp. 505–514. 

[11] D. Cine, P. Egbert, Terrain Decimation 

Through Quadtree Morphing, IEEE 

Transactions on Visualization and Computer 

Graphics, Vol. 7, 2001, pp. 62-69. 

[12] R. Pajarola, Overview of Quadtree-based 

Terrain Triangulation and Visualization, UCI 

ICS Technical Report No. 02-01, 2002. 

[13] M. Lanthier, D. Bradley, Evaluation of Real-

Time Continuous Terrain Level of Detail 

Algorithms, Ottawa Carleton University, 

Honours Project, 2003. 

[14] R. Pajarola, Large Scale Terrain Visualization 

Using The Restricted Quadtree Triangulation, 

1998. 

[15] R. Pajarola, M. Antonijuan and R. Lario, 

QuadTIN: Quadtree based Triangulated 

Irregular Networks, Proceedings IEEE 

Visualization, 2002, pp. 395–402. IEEE 

Computer Society Press. 

[16] Math Median Tutorial, Web Page Source, 

http://www.easycalculation.com/statistics/learn-

median.php 

[17] R. Wright, M.Sweet, B. Lipchak, OpenGL  

SuperBible, Third Edition, 2004. 

[18] Plane Equation, MathWorld, Web Page 

Source, 

http://mathworld.wolfram.com/Plane.htm 

 

 

 

Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007      249


