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Abstract: Markov random fields (M.R.F.) on a lattice system and Gibbs distribution provide a wide area of 
models for interacting particle systems in image analysis, mechanical physics and statistical mechanics. 
Physical properties of the neighbors could be explained by partial differential equation (PDE) inside the 
potential function introducing PDE-MRF models. In image analysis, they have been used to describe the local 
characteristics of the spatial interaction between pixels.  Although, in model image reconstruction, a number of 
fundamental issues remain unexplored, such as the specification of M.R.F. models, performance evaluation of 
the neighborhood structure of these models, and the phase transition phenomenon. In this work, spatial 
behavior of the auto-exponential model in a rectangular lattice would be investigated, concentrating on the 
first-order neighborhood structures. A simple deterministic model based on a univariate iterative scheme is 
studied which predicts the properties of these models and realizations have been generating using the Gibbs 
sampler to illustrate the properties. For well defined regions in the parameter space this iterative scheme is 
unstable leading to catastrophic and 2-cycle behavior. 
 
Keywords: Markov random fields, Image reconstruction, Auto-exponential model, Gibbs sampler, texture 
analysis, phase transition, partial differential equations, mean field.  
 
 
1   Introduction 
 
Stochastic models and statistical methods have been 
successfully applied in image processing and pattern 
recognition. Particularly, interesting are Bayesian 
methods based on local characteristics. Key 
components of any statistical analysis are the choice 
of an appropriate model as the prior and the 
estimation of the prior model parameter. The 
Bayesian approach to reconstruction in spatial 
processes involves the modeling of prior 
information in addition to a component describing 
the degradation process. This prior components, 
describe local characteristics of the spatial process, 
which is often modeled using a Markov random 
field [5]. However, this prior component usually 
involves unknown prior parameters which control 
the influence of the prior distribution. In many 
applications, appropriate values for these parameters 
will be found by trial-and-error, in other cases a 
fully Bayesian approach will be adopted and the 
prior parameters estimated in the same way as other 
model parameters. However, in all these cases it is 

expected that the procedures depend smoothly on the 
prior parameters and that there is a unique 
relationship between the parameters and different 
types of behavior of the process introducing 
influence of partial differential operators (pde-MRF 
models) The foundations of Markov random fields 
lie in the physics literature on fermomagnetism 
originating in the work of [14]. Models based on 
Markov random fields can be used to extract 
statistical information about the structure of real 
word phenomena which could be represents in some 
sense as textures. The main goal of texture analysis 
is to extract useful textural information from an 
image using statistical tools like Markov random 
fields; [6, 18, 19] used these models to generate 
texture images from the auto-binomial model, [22] 
investigated the Markov random field models 
defining general properties using the definitions of 
random fields and Gibbs random fields. A particular 
subclass of Markov random fields is the auto-
models, introduced in [5] and further studied in [4, 
6, 1, 26, 27]. In practice estimates using Bayesian 
methods cannot be computed analytically. For this 
reason Monte Carlo algorithms can be used to 
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generate samples from the posterior distribution and 
parameter estimates calculated from this sample. 
The fundamental idea is to use an algorithm, which 
generates a discrete time Markov chain converging 
to the desired distribution. The most commonly 
algorithms include the Gibbs sampler [9] and the 
Metropolis-Hasting algorithm [10, 14]. Applications 
of these methods cover a wide range of areas 
including: detection of lesions in medical imaging 
[2]); astronomy [20], medical biology [8, 27], 
medical imaging in SPECT [3, 11, 24, 26, 27]. In 
this work, it would be shown that for one particular 
group of models the behavior is far from being 
straight forward and smoothly dependent on prior 
parameters. A simple deterministic iterative scheme 
would be considered which can be used to predict 
the behavior of the spatial process. We shall look in 
detail at the corresponding equations for the auto-
exponential model, which have a various 
applications in biology and medicine. A relationship 
between the prior parameters would be obtained, 
which shed light on the choice of parameters used 
by [6] to simulate texture images using auto-
exponential model. Finally, the Gibbs sampler 
would be used to simulate example images for 
various parameter combinations which demonstrate 
the behavior predicted by the simple iterative 
scheme. 
 
 
2   Markov random fields modeling 
 
Markov random fields are often useful models for a 
sampled image with local dependencies. The most 
important characteristic of these models is that the 
global representation of the image can be formed as 
a stochastic propagation of interactions defining a 
local neighborhood structure. In this section basic 
definitions and notations are given which were 
introduced by [1, 4, 5, 6]. The reader is directed to 
these papers for further details. 
Suppose that we have a two-dimensional space, S, 
which has been partitioned into n pixels, labeled by 
the integers Λi={1, 2,..., n} defined as state space. 
Each pixel variable can be discrete (finite or infinite) 
or continuous. We refer to the possible values of the 
pixel variable as intensities. Let Xi be a random 
variable assigned to a pixel xi and X = (X1, 
X2,...,Xn), be a random variable vector for an image, 
then a intensity x = (x1, x2,..., xn), with xi ∈Λ can be 
assumed as a realization of X. We use the function 
p(xi|...) to denote the conditional probability 
distribution (or density function) of Xi given the 
other arguments. We shall be considering a 2-D 

rectangular lattice, each site i of which has a random 
variable xi. The configuration space for the variable 
x is denoted by Ω with: . For simplicity 

each pixel of the finite lattice can takes colors from 
the set Λ= {0, 1, 2, ..., c-1}. To define a Markov 
random field, a neighborhood structure N is needed, 
which defines the range of interaction from one 
pixel to another. A neighborhood system N ={N

∏
∈

Λ=Ω
Si

i

i, ∀ 
i∈ S} is a collection of subsets of S for which: (i) i∉ 
Ni (a site is not part of its neighborhood) and (ii) j ∈ 
Ni ⇔ i ∈ Nj (i is in the neighborhood of j if and only 
if j is in the neighborhood of i). In general, ∀ s∈ S: 
s=(i,j), an nth order homogeneous neighborhood 
system could be defined as { }SjiNN ji

n ∈= ),(:),(  

and { }njlikSlkN n
ji ≤−+−∈= 22
),( )()(:),(

.Obviously, sites near the boundary have fewer 
neighbors than interior ones (free boundary 
condition). Furthermore for all 
n≥0: .Considering conditional probabilities 
on lattices, site j is said to be a neighbor of site i 
(≠j), if and only if, the functional form of the 
conditional probability distribution of X

SN ≡0

1+⊂ nn NN

i given all 
other pixel values depends upon xj [4]. The form of 
neighbors for each site can be defined 
as ,where)|(),....,,,....,,|( 1121 iiniii xxpxxxxxxp ∂+− = i∂ is 
the set of pixels which are neighbours of site i, and 

the set of values of pixels which are neighbours 
of pixel x

ix ∂

i. The usual neighbourhood system in 
image analysis defines the first-order neighbours of 
a pixel as the four pixels sharing a side with the 
given pixel (Fig. 1). Higher order neighbors are 
defined in an analogous manner. 
 

    
           Fig.1. First order neighbours 

A clique C is a subset of S for which every pair of 
sites is neighbors. Single pixels are also considering 
cliques. The set of all cliques on a lattice is called CC. 
Cliques are important when considering the 
equivalence between MRFs and the Gibbs 
distribution. Fig. 2 illustrates the set of cliques for 
the first order or nearest-neighbors system with 
form: {(i, j)}, {(i-1,j), (i, j)}, {(i,j-1), (i, j)} (Fig. 2).  
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Fig. 2. Clique type for first order 
neighbors system 
 

A random field, with respect to a neighborhood 
structure is a Markov random field if the joint 
probability density on the set of all possible 
intensities values x satisfies the following properties: 
(i) p(X)>0 for all X, (ii) p(all pixels in the lattice 
except xi)=p(Xi| neighbors of xi). According to the 
Hammersley-Clifford theorem [13, 4, 5], an MRF 
can equivalently be characterized by a Gibbs 
distribution. Thus the joint probability is given by 

( ){ xU
Z

xp −= exp1)(

 
Fig.3. Independent graph associated 
to an image partition 

 
Energy function U(x) can be written in terms of 
clique potentials which accounts for the contribution 
to the energy from the cliques. 

( ) ( )

( ) ( )∑∑∑
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Gi (.) is arbitrary functions. The above models are 
called auto-models [5]. The family of auto-models 
can now be generated using the following 
assumption [5]: the probability structure only 
depends on contributions from sites taken either 
singularly or in pairs and the conditional probability 
distribution is a member of the regular exponential 
family of distributions, 

}, where Z is the normalised 

constant or partition function and U(x) is the energy 
function with form  with the 

summation is over the local clique potentials set 
V

( ) ( )xx ∑
∈

=
Cc

cVU

c(x) over all possible cliques C [9].  We make the 
additional assumption that the MRF is 
homogeneous; i. e., the potential function is the 
same for all cliques. This property gives rise to 
translation-invariance of an MRF model. Without 
loss of generality we assume the maximal cliques in 
the MRF are square pixel patches of a fixed size; 
other, non-square, neighborhoods could be used. 
Configurations of low energies are the more likely, 
whereas high energies correspond to low 
probabilities.  The interaction structure induced by 
the factorized form ( ∏

∈

=
Cc

cc xfxp )()( , where fc(xc) 

depends only on the variable subset { cixx ic

 ( ) ( ) ( ) (

}∈= ,  

and ∏ is summable over Ω) presented by an 

independent graph: the independence graph 
associated with the factorization is the undirected 
graph G=[E,S] with vertex set S={1,2,…,n} and 
edge set E defined as: { }

∈Cc
cc xf )(

{ } cjiCcEji ⊂∈∃⇔∈ ,:, . 
As a consequence of the definition, any subset c is 
either a singleton or composed of mutually 
neighbouring sites: C

){ }iiiiiiiiii ωDxCxBωAxxp ++=∂ exp)|(  where 
is a model parameter associated with site i and is 

a function of the values at sites neighbouring site i. 
As a direct consequence of the above assumptions, 
A

iω

i must satisfy, ( ) ( )∑+= jjijiii xBβαωA , where 

jiij ββ =  and 0=ijβ unless sites i and j are 
neighbours. The functions Bj are linear in xj with the 
exception for the auto-exponential model where Bj  
is equal to -xj. With  Bj is equal to xj the equation  
becomes, ( ) ∑+= jijiii xβαωA .In this paper only 
homogeneous schemes are considered, so that the 
dependency of and on i is removed. Also 
toroidal boundary conditions is assumed. For the 
first-order neighbourhood system introduced above, 
the equation  is given by 

iα ijβ

( ) *)(*)( 21 vvβuuβαωA ii ++++= , 
where and and are parameters of the 

model. If 

α 1β 2β

βββ == 21 we have isotropic model, 
otherewise we have anisotropic model.  
Definition: Suppose that the conditional distribution 
of xi has an exponential distribution with mean 

dependent on the values of the neighbors. Then 
the joint probability distribution p(x) is auto-

exponential and 

iλ

( )
i

iiA λλ 1= . The conditional 

probability for the auto-exponential  model, is given 

C  is a set of cliques for G. Fig. 3 
represent an independent graph associated with 
partitions.  
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3   PDE-Markov random fields models 
 

Physical properties of the neighbors, direct us to the 
assumption of smoothness and homogeneity 
implementing various Markov random fields models 
as prior models. The statistical methodology in 
image analysis allows us to analyze priors that allow 
moderate discontinuities in the images. Based on the 
consideration of smoothness-prior assumption for 
image textures, a suitable form of energy function 
can be considered explained by partial differential 
equation (PDE) inside the potential function. 
Modification of the smoothens assumption could be 
introduced using total variation of the image.  The 
total variation of a function f, denoted by TV (f), is 
defined as: ( )dxxffTV ∫ ∇=)( . A function is said 

to have bounded variation if TV(f)<∞. The TV prior 
is defined as . If 
it is assumed that u-u

{ } { )(exp)(exp)( fTVxUxp −≈−≈ }
* (or v-v*) is spatially changing, 

then interaction between neighboring pixels may be 
approximated by first-order differential operator 

with general form: dudv
v
Xf

u
XfV

Cc
pde ∫

∈
⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

= 21 , 

where f1 and f2 are proposed functions, X is the 
random variable vector for an image and the partial 
derivatives calculate the interaction between        
neighboring pixels.  
 

 
4   Mean field approximation 

 
The mean field theory investigates the influence of 
the intensity xi in the calculation of the expectation 
which can be approximate by the influence of <xi>. 
By definition the expectation of the intensity can be 

calculated by: ( ){ }xx Ux
Z

pxx
ii x

i
x

ii −=>=< ∑∑ exp1)( . 

[25] suggests that the mean field approximation of 
the above form can be given 

by: ( ){ xMF

x
ii Ux

Z
x

i

−>=< ∑ exp1 }, where inflence 

of the field can be approximated by the mean of the 
neighbours. In order to find that mean field, an 

iterative process can take place to solve the 
complexity of the computations. Recalling the 
pseudo-likelihood method [4, 26] for every auto-
model the conditional expectation of a pixel value 
given its neighbors is proportional to the model 
parameter [ ] iii cxxE ω=∂| . So it is reasonable to 
replace the value of each neighbor by its conditional 
expectation (mean field theory, [7, p131]). Since we 
are generally interested in , we invert the 
equation A

iω

i and define Zi, ( )∑+= jijiii xβαZω , 
where Zi= Ai

-1. In this section an isoropic model is 
assumed, so the equation  becomes 

( ){ }** vvuuβαZωi ++++= . Then using the mean-field 
approximation [7], that is assuming a uniform 
image, except for statistical variations this reduces 
the above equation to [1, 3, 26, 27] 

{ }ωbαZω += where kmb β= with m denotes 
the number of neighbours. We could solve equation  
by setting up the corresponding iterative process 

{ }rr ωbαZω +=+1 .                                             
Any fixed point in the process is a solution of 
equation and a candidate of the parameters in an 
isotropic steady-state stochastic process. A 
necessary condition for this is the stability of the 
process. If we define { }ωbαZωF +=)( so the 
iterative process may be expressed as )(1 rr ωFω =+ , 
then according to standard theory of iterative 
process, a fixed point is stable when Fω

( ) 1<′ FωF and unstable when  ( ) 1>′ FωF . 
So for stability, 

  
( ) ( )

( ) ( )( )ωωα

ωαω

AZbZ
b

bZbF F

′
=

+′
<

⇒<+′=′

11
1

           

 
Assuming isotropy and the mean field 
approximation equation produces the relationship 

0)( =−+ ωAωbα  which shows that the locus of 
the points for which takes the fixed constant 
values is a straight line in the plane. With the 
α-axis horizontal and b-axis vertical the line has 
gradient -ω

ω
bα −

-1 and vertical intercept A(ω)ω-1 [1]. By 
considering equality and since there is a relation 
between α, b and ω, the parametric equations for the 
boudary of the critical regions can be obtained. 
There are two parts, the upper half in the 

bα − plane [1, 3, 26, 27] 

))((
1           ,

))((
)(

ωAZ
b

ωAZ
ωωAα

′
=

′
−=  
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and in the lower half of the  plane [1, 3, 26, 

27]         

bα −

))((
1           ,

))((
)(

ωAZ
b

ωAZ
ωωAα

′
−=

′
+= . 

For the auto-exponential model ( ) λλ 1=iiA , and 

making the usual assumptions a-b plane equation 
becomes 01 =−+ λλα b . The iterative scheme is 

stable when 2
1
λ<b . The parametric equations for 

the boundaries of the critical regions are in the upper 
half of the plane: bα − 2

1,0 λα == b and in the 

lower half of the  plane: bα − 2
1,2
λλα −== b , 

illustrared in Fig. 4. 
 
 

         
Fig. 4: Regions of district behaviour for the auto-
exponential model. Vertical axis: values for a 
parameter; Horizontial axis: values for b parameter. 

 
For parameter combinations in the region marked 
DIV in, the iterative scheme diverges for the auto-
exponential model. Parameter combinations in the 
Stable quadrant produce unique stable fixed points 
in the iterative scheme. The observed images should 
appear smooth with variation due to exponential 
noise; the mean should be given by the unique fixed 
point of the iterative scheme. For parameter 
combinations in the region marked div, the iterative 
scheme has two fixed points. For initial values above 
the upper fixed point the iterative scheme diverges; 
otherwise it converges to the lower fixed point. 
However, statistical variation will cause divergence 
in the spatial process. 
 
5. Image reconstruction 
algorithms 
 
Equation ( )ωω baZ +=  is a representetive of a set of 
n non-linear simultaneous equations in n-unknows 
because the values of the neighbours depend on the 
corresponding conditional distributions. It is not 

possible to solve thi set of equations analytically, so 
the ependency of  ω, on a and b can be investigated 
using simulated realisations of the spatial process. 
Since the configuration space is extremely large (for 
a binary NxN MRF there is 2M possible states where 
M=N2 which for N of the order of 100 is 
210000≈103010). Markov chain Monte Carlo methods 
have been studied by various researchers as an 
alternative to exact probability computation in image 
analysis. The general method is to construct a 
Markov chain with the required probability as it 
equilibrium distribution. [21]. Then realisations of 
the Markov chain form a pseudo-sample from the 
required distribution. This pseudo-sample can then 
be used to estimate various statistical measures of 
the image. In particular our interest is concentrated 
on the distribution p(x) using a particular realisation 
X 1, X 2… X N on the Markov chain with transition 
probability )( xxp ′→ .Typically asymptotic results 
include: 

{ )()(1    ;  )(~
1

xfExf
t

xpXX p

t

i
t

i
d

t

t ∑
=

∞→∞→
⎯⎯→⎯→ } where 

the expectation { })(xfE p  is to be estimated. The 
corresponding empirical average will be used 

namely: (∑
+

=
N

t

t
N xf

N
f

1

)(1 ). The Gibbs sampler 

[9], a particular MCMC method, is an iterative 
process for simulating a sample from a specified 
probability distribution. At each iteration, the value 
of only one pixel can change. Although the sequence 
in which the pixels are visited is arbitrary, it is 
common to visit them in order 1,2,…,n. The Gibbs 
sample is a general method for producing samples 
from a distribution. It is particularly useful when the 
distribution being sampled is a Gibbs distribution, 
and the resulting samples form a Markov random 
field. Let Xs be a finite dimensional random field 
that takes on values in a discrete and finite set Ω for 
all s∈S. If we assume that the distribution of X is 
strictly positive, then without loss of generality we 
know that the distribution of X can be written in the 

form ( ){ xU }
Z

xp −= exp1)( . The marginal 

distribution of a pixel can be written as 
( ){ }
( ){ }∑

Ω∈

≠−
≠−

=≠
'

,|exp
,|exp),|( '

sx
is

is
is sixxU

sixxUsixxp We 

can generate samples from the distribution of p(x) 
by using the following Gibbs sampler algorithm: 

1. Set N = number of pixels 

Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007      38



2. Order the N pixels as N=s(0), 
s(1),…., s(N-1) 

3. Repeat for k=0 to ∞ 
Form X(k+1) from X(k) via 

⎩
⎨
⎧

≠
=

=+

)( if,
)( if ,

)(
)1(

ksrX
ksrW

X k
r

k
r  

where ( ))(,|~ )(
)( ksiXxpW k

iks ≠ . This iterative 
scheme is continued to produce a sequence 
( )tXXX ,,,0 K1 , which is realisation of a Markov 

chain with transition probabilities from to  

given by: . 

After an initial transient period, a realisation from 
the required probability distribution has occurred. In 
practice it is important to monitor convergence to 
the equilibrium distribution. For a discussion of 
convergence see [12, 23]. For the auto-exponential 
the valid parameter space is even further restricted, 
since the spatial scheme is stable only when a > 0 
and b > 0. In accordance with the predictions of 
section 4 the stochastic process with any other 
parameters diverges. In figure 5(a) a = 0.2 and b = 
0.8 and in figure 5(b) a = 2 and b = 10 which is 
further into the Stable region. 

tx 1+tx

( ) (∏
=

++ ><=→
n

l

t
l

t
jl

tt tjxljxxpxxp
1

11 ,,,| )

 

             
 

Fig. 5: Examples from the auto-exponential models: 
(a) α=0.2, b=0.8, (b)  α=2, b=10 

 
6. Conclusions 
 
Stochastic models and statistical approaches have 
been successfully applied in various areas of image 
analysis. The main task is the choice of an 
appropriate model as the prior and estimation of 
model parameters. Because of the complexity of 
the problems direct estimation can not be used. For 
that reason estimates can be generated from Monte 
Carlo Markov chain methods based on samples 
from the posterior (or the prior) distributions. The 
most commonly used algorithms include the Gibbs 

sampler and the Metropolis-Hastings. 
In this work we have shown that for the auto-
exponential model parameter space can be divided 
into regions, each with distinct spatial behavior. 
Spatial properties of the auto-exponential model 
were studied and realizations from auto- 
exponential model have been generated using the 
Gibbs sampler.  For appropriate combinations of 
models parameters different Markov random fields 
can be introduced and for certain combinations the 
behavior is not straightforward. Physical properties 
of the neighbors, smoothness and homogeneity 
introduce various Markov random fields models 
which could be explained by partial differential 
equation (PDE) inside the potential function. As a 
result, the parameter space can be divided into 
regions, each with distinct spatial behavior. The 
iterative procedure classifies each region as either 
stable or unstable leading to phase transition 
process. The behavior in the stable region is clear, 
one solution exists which is the expected value of 
the particular model. For the unstable region the 
behavior is more complicated and depends on the 
model being examined. Clearly this type of 
behavior is unacceptable if we wish to perform 
stable estimation.  
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