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Abstract: - Author discuss a problem of determining parameters suitable systolic arrays 
for implementation regular 3-nested loop algorithms. It is showed that on that occasion it  has to use the 
characteristics of  so called adaptable algorithms to the projection direction, if  it has they. If  this 
characteristics are not use, the difference in obtained results could be very significant. This characteristics can 
be space and time. The analyse a time objective functions for systolic arrays is very complex problem because 
the change of some space or  other  time objective function make influence  on  time objective functions. 
Therefore  time objective functions  are object for considering in this paper. Also obtained results in this paper 
are illustrated on the example of  matrix multiplication. 
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1 Introduction 
For given regular p-nested loop algorithm exists 
many 2D systolic arrays ( SA-s) 
suitable for its implementation. They could be 
different in significant measure in parameters, no 
matter if  they have or not, some topological 
structure. To chose best suitable before his design 
and synthesis, it is good that we know in advance 
their characteristics. 
In literature (see for example [4] and [17]), is 
defined big number of space-time characteristics, 
i.e. objective functions, and given procedure for 
theirs determining. The subject of interesting in this 
paper are some of this time characteristics and that:  
summary time necessary for realization of given 
algorithm-T, flow period time between two 
consecutively calculation some algorithm-tp. 
We must define and understend and some basis 
space’s  characteristics like :  
number of processing elements PE-s in SA–Ωp,area 
of SA-ga, and also 
space-time characteristics like AT measure. 
Importance of this characteristics depends of 
boundary nested loop algorithm's and 
transformation matrix with whose help is SA 
synthesized. We can not to exert influence on 
boundary of nested loop algorithm but it is possible 
significant to exert influence on transformation 
matrix. This privilege gives the fact that one 
of projection directions corresponds to set of 
suitable transformation matrix's.  Therefore, it is 
important to intensify criterion’s for his 

determining so that the transformation matrix's 
which synthesize SA with bed characteristics to be 
automatic exclude. 
 
 
2 Systolic arrays characteristics 
Each regular 3-nested loop algorithm can be 
characterized by a pair (D,Pint), where 

is a dependency matrix, Pint  = {(i,j,k) | 1≤ i ≤ N1, 1 
≤ j ≤ N2, 1≤ k ≤ N3} is index set where data are 
used or computed, and N1,N2 and N3 are index 
boundaries. 
The SA implementation can be obtained by a linear 
transformation 

where  first component of T determines time 
schedule and second - S is the space mapping 
function determining PE-s  locations and the 
communication channels between them. Vector  

is obtained from equation (3),for example see [3]. 
The sign + or - is determined from condition  

Matrix S which maps Pint into 2D SA is determined 
from the following conditions : 
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 Matrix T must be nonsingular, i.e. 

This ensures a conflict free mapping. 
 The corresponding projection direction   

is orthogonal to the projection plane, i.e. 

 The connection between the PE's in the 2D SA 
must be of near-neighbor type, and crossing 
is not allowed. This requirement means that 
elements  
of matrix ∆S=S·D  
have to be from the set {-1,0,1}, i.e. 

 Two arbitrary position vectors from Pint 
must not satisfy both 

simultaneously. 
It is remarked that noticed condition for given 
projection direction  

not determine uniform matrix S as well as matrix T.  
We introduce  
for reduction the set of possible matrix S, and so 
abandon those for 
 which would obtain worst space characteristics of 
synthesized SA, follow : 

 We exchange condition (5) with stronger 

 In the case of planar 2D SA synthesis,  
i.e. for  case 

we impose to elements matrix S one of follow 
alternate conditions.  
If  µ1=1 elements matrix's S must satisfy equality 

and if μ2=1, 

Conditions (9) and (10) have not to demand 
simultaneous.  
So, for example  

must to determine or (9) or (10). 
Now, by standard projection procedure, see for 
example the  
papers [1]-[8] and [10], after selection the valid 
transformation T  

for given projection direction, synthesis of 
corresponding SA is on the base of mapping  
(11)      T : (D,Pint) → (∆,Pint*).  
We give now the procedures for determining basic 
characteristics, conform to mainly results from 
papers [2]-[4].In spite  
of all that it is considered 2D SA suitable for 
regular 3-nested loop  
algorithms implementation, with loop top borders 
N1,N2  and N3. 
 
 
2.1 Space characteristics 
Number of  PE-s in SA(notation Ωp )is given with:  
Theorem 1. 

 

T1i is the (1,i) - cofactor of matrix T, 1 ≤  i  ≤ 3. 
With gcd(T11,T12,T13) is noticed the largest 
common divisor of numbers T11,T12 and T13. For 
determining  array of 2D SA, in notation ga, is used 
following result : 
Theorem 2. 
(14)…ga =  (N1-1)(N2-1)|T13|+(N1-1)(N3-1)|T12| +  
                 +(N2-1) (N3-1) |T11|. 
 
 
2.2 Time characteristics 
From time’s objective functions, see [4], we 
consider summary time is the time necessary for 
realization of given  algorithm on synthesized SA 
and is calculated as sum of  time for date input in 
SA- Tin, , time for algorithm executing - Texe, and 
time necessary for dates leaving  SA - Tout, 
i.e. T = Tin+Texe+Tout,  
Remark 1. Texe is calculated from  next equality:   

Theorem 3. 

 Also, tp, called flow period of processor can be 
calculated on  
the basis of next equation: 
Theorem 4. 
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2.3 Time-space characteristics 
AT-measure is defined with  
AT= Ωp T or AT2 = Ωp T2. 
Efficiency Ep is defined with  
Ep=T1/TΩp 
where T1 is time realization of given algorithm on 
one PE. 
This characteristics is necessary like complement 
analysas while often the decreasing of space 
parameters (i.e. the number of PE-s) to improve SA 
sharacteristics causes the increasing of time 
parameters(i.e. the number of tacts for necessary 
calculations). 
 
 
3 Main result 
Let α  be a regular 3-nested loop algorithm with 
index space  
Pint = {(i,j,k) | 1≤i ≤N1, 1≤ j ≤N2, 1≤k ≤ N3}. We 
introduce the  
following subclasses of α.. 
Definition 1. If the ordering of computations in 
algorithm α, for some  
fixed j, may be performed over arbitrary 
permutations of  index  
variables i and k, we say that α  is α (i,k) adaptable. 
Definition 2. If the ordering of computations in 
algorithm α, for some  
fixed i, can be performed over arbitrary 
permutations of index  
variables j and k, we say that α is α (j,k) adaptable. 
Remark 2. If a given algorithm α satisfies both the 
Definition 1. and 2., we say that α  is adaptable. 
If the given algorithm is from some of defined 
classes, its adaptation  
to the given projection direction working with 
linear mapping H=(F,G),  
where F is 3x3 matrix whose elements are in 
function of elements of  
vector µ and G is 3x1 vector with constant 
elements which provide  
that after adaptation mapping : 
(17)………H : Pint → Pint^ 
space Pint^ again is in first octant coordinate 
system. 
Now we are defining the mapping H. 
Definition 3. Suppose that a given algorithm  
is of type α(j,k).  
If  

 
is allowable projection direction the mapping 
H=(F,G) is defined by 

where g2 and g3 are smallest integers determined 
such that for each [i,j,k]T  
from Pint the following equation’s are valid 
v = μ2i+g2+j > 0 and  w = μ3i+k+g3 > 0. 
The elements v and w are defined according to 

Definition 4. Suppose that a given algorithm is of  
type α(i,k).  
If  allowable projection direction is 

than mapping H=(F,G) is defined by 

where g1 and g3 are smallest integers determined 
such that  
for each [i,j,k]T  from Pint the following equation’s 
are valid : 
u = i±μ1j+g1 > 0 and  w = k±μ3j+g3 > 0. 
The elements u and w are obtained according to 

Now, instead mapping given with (18), we are 
making  
suitable 2D SA with two mapping : 
(22)H: Pint → Pint^  and  T: (D, Pint^ ) → (∆,Pint*) 
 where elements of space Pint^  are defining with 
(19) or (21), in dependence of projection direction. 
Let as now to determine  
time characteristics these synthesized SA. 
Theorem 5. Suppose that a given algorithm α is 
α(j,k) adaptable, the index space  
Pint = {(i,j,k) | 1≤i ≤N1, 1≤ j ≤N2, 1≤k ≤ N3  and 
 the projection direction  

 
Proof.  
 According (2) and the form of matrix H, (18), we 
can see that the valid  transformation is 
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and from other side  from (2) and (18) we have   
(25)t=(t11+μ2t12 +μ3 t13 ) + t12j + t13k + g2t12 + g3t13 .  
According remark 1.  we have  
Texe= 1 + | t11+μ2t12 +μ3 t13  |(N1-1) + |t12 |(N2-1) +  
+ |t13 |(N3-1) i.e.  
Texe= 1 + | μπ ⋅ |(N1-1) + |t12 |(N2-1) + |t13 |(N3-1). 
Using (15) we have 

 
By the some procedure we prove case  

Consequence 1.We have two different cases: 

when we have  processing elements full 
engagement  in algoritham realization of 
sinthetized SA and this time of realization Texe is 
equal with the time in one space unoptomized SA 
(so we have already a big contribution in time-
space minimization sinthetized SA, suitable for 
realization this considered algorithm) ; 
 

  
when we have tp-1 empty steps in two successive 
calculations in one  processing element  of 
sinthetized SA and this is no the deficiency than 
advantage.  
Let  1<tp≤5 and let FP={0,1,2,…, tp -1} is the set of 
moving factors of the index variable i. We mark 

{2,3,5}. tfor  , 
tN 1, 

t  N , 
  )25( p
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Each index variable i we can give uniform factor r1, 
like the biggest element from set FP so that satisfy 
 .0r1i 0,)1(t- )26( 111p =⇒=<+− Nri  
Also, in this way each index variable j we can give 
uniform factor r2, like the biggest element from set 
FP so that satisfy 

.0)()1()1(t- )27( 12p ≤++−−− Nrrji  
On the basis (26) i (27) we give uniform each pair 
of index variables (i,j)  the pair  of moving factors 
(r1,r2). Now  we move each input variable in  the 

space of initial calculations  or  in the plane of SA 
for size (r1+r2) N1  according to corresponding 
vector {1,2,3}. , 3 ∈γγe  
So we havn’t pauses between two successive 
calculations in each PE-s synthesized SA. 
Advantage of results obtained according to 
Theorem 5.  and  suitable consequence, in 
relationship with knowen results from  
literature, we can see  on two rectangular 
matrix multiplication, A=(aik) order N1 ×N3 and 
B=(bkj) order N3 ×N2. We determine, free choice, 
for projection directions: 

These SA are meeting very often in  literature ( see 
for example [1],[4],[17]) which is suitable for  
comparing with results from this paper. By 
comparing, we  consider case  N1≤N2 and the case 
N1=N2=N3=N  will be given in parenthesis. 
Synthesized array with standard 
procedure have characteristics noticed with WE 
and using procedure from this paper, given with 
(22), noticed  with NR. 
For direction  

we obtain orthogonal 2D SA.  

For direction  
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we obtain hexagonal 2D SA.  

 
 
 
 
 

 
 
 
On the base obtained values, we can see difference  
when  we using or not the property of adaptability 
observed algorithm.  
For other side obtained characteristics orthogonal 
and  hexagonal 2D SA suitable for implementation 
in the matrix  multiplication algorithm, are 
completely coincide with  characteristics of static 
2D SA. This gives now completely  
different picture in comparison  with made in, 
papers [3]-[4] and [13]-[14]. 
For illustration, figures 1, 2, 3 show analyzed SA 
for projection directions  

respectively, for case N1=N2=N3=3 and when 
parameters are defining with Theorems 6.,. i.e. 
synthesized on the basis (22). 
 
 
4 Conclusion  
In the paper is showed that on the occasion of  
determining space and time parameters SA suitable 
for implementation  regular 3-nested loop 
algorithms,also on occasion of synthesis  these 
arrays, it have big sense to use adaptability of 
algorithm to the projection direction, when it allow 
that. For algorithms  with this property is described 
one adaptability procedure. This one is apply 
before using of  transformation when synthesize 
single SA. Obtained results are illustrated on 
example of algorithm for rectangular matrix 

multiplication. 
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