
 

 

Priority Strategy of Software Fault Localization  

 
Sun Jirong Li Zhishu Ni Jiancheng Yin feng 

School of Computer 
Science, Sichuan 

University, Chengdu 
610065, China 

School of Computer 
Science, Sichuan 

University, Chengdu 
610065, China 

School of Computer 
Science, Sichuan 

University, Chengdu 
610065, China 

College of Computer 
Science and Technology, 
Southwest University for 
Nationalities, Chengdu 

610041, China 
sunjr@scrtvu.net Lzshu5@yahoo.com.cn nijch@163.com yf_eagle@yahoo.com.cn 

 
Abstract: To a given test case, fault localization has to be proceeded when its output is wrong. A novel method is 
presented to localize a fault. Firstly, by analyzing the relation between testing requirement and test cases that satisfying it, 
some assistant test cases are selected out. Then, program slice is introduced to reduce the searching domain based on 
priority, which has been evaluated according to the occurrences in the selected slices. Two procedures, refining and 
augmenting, are followed here to fault localization: in the refining phase, the most suspicious codes are checked step by 
step; in the augmenting phase, more codes will be gradually considered on the basis of direct data dependency. At last, 
experimental studies are performed to illustrate the effectiveness of the technique.       

Keywords:  test suite management; execution slice; dynamic slice; assistant slice; fault localization; direct data dependency; 

1. Introduction 

To improve the quality of a program, we have to remove as 
many defects as possible in it without introducing new bugs at 
the same time. However, locating a fault is a complex and time-
consuming process. 

A usual way is to use debugging tools. Break points must 
be set along a program execution and values of variables 
examined as well as internal states at each break point. This 
approach has two significant disadvantages: one is that it 
requires users to develop their own strategies to avoid 
examining too much useless information, and the other is that it 
cannot reduce the search domain by prioritizing code based on 
the likelihood of containing faults on a given execution path. 

Program slicing is a program analyzing technique that 
reduces a program to those statements relevant to a particular 
computation. Mark Weiser introduced program slicing of error 
variable to exclude irrelevant statements thus to reduce the 
searching domain, but the slice was still too large [1]. 
Furthermore, Li Bixin proposed firstly to construct the forward 
slice of the input and backward slice of the output, and then to 
obtain the intersection of these two slices, but too many codes 
left were to be examined [2]. An execution slice-based 
technique as reported in [3] can be effective in locating some 
program bugs, but not on others especially those in the code that 
is executed by both the failed and the successful tests. Another 

problem is that even if a bug is in the dice obtained by 
subtracting the execution slice of a successful test from that of a 
failed test, there may be still too many codes that need to be 
examined. 

Much information is available to help us localize a fault 
after software testing, such as testing requirements and their 
associated test set, test result analysis etc. While most fault 
location techniques have not taken these into consideration. 

In this paper, we present a novel method to locate a bug 
based on code priority strategy and program slicing technique. 
The next section details how to utilize the relation between test 
cases and the corresponding requirements to obtain the assistant 
information in fault localization. In section 3 we use a sample 
program to illustrate how to manage the test suite. Section 4 
demonstrates our code prioritization methodology. In section 5, 
we present the key algorithms, refining and augmenting, to 
locate a fault based on code priority and in section 6, 
experimental studies are being performed to illustrate the 
effectiveness of the technique. Concluding remarks are given in 
the last section. 

 

2. Preliminary work 

2.1 Test Suite Management 
For a given program P, a testing criterion has to be defined 

before testing process. Generally speaking, a testing criterion can 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      499

mailto:sunjr@scrtvu.net
mailto:nijch@163.com


 

 

be considered as a set of testing requirements. For black box 
testing, the program specifications are used to identify the testing 
requirements. For white box testing, the structural components 
of the program become the testing requirements i.e. statement, 
branch, D-U pairs etc. For example, if the testing criterion is that 
each branch of the program be executed at least once, each 
branch can be considered as a testing requirement. [4].  

Let T={t1,t2,…tn} be the initial test suite and R={r1,r2,…rm} 
be a list of m testing requirements that must be tested to provide 
the desired testing coverage of the program. 

Test cases designed specifically for a requirement may 
satisfy other requirement. Let Req(ti)={rti1,rti2,…rtik} be the set of 
requirements that test case ti satisfies, R= Req(t1)∪Req(t2)…∪
Req(tn). For each testing requirement ri, an associated testing set 
Test(ri) consists of the test cases in T that can be used to test the 
requirement ri, obviously T=Test(r1)∪Test(r2)…∪Test(rm).   

These testing requirements and their associated testing sets 
are used by our code prioritization strategy.  
 
2.2 Req(ti,tj) 

To a given test case GTC, fault localization is needed when 
the output of the program was wrong. We can preliminarily 
conclude that the error exists in the requirements Req(GTC) it 
covers. 

If Req(GTC)=1, undoubtedly the bug exists in the only one 
requirement, no further work is needed any more. If 
Req(GTC)>1, then we must further localize the exact error 
requirement. 

Definition 1: Let us use Req(ti,tj) to stand for the set of 
common requirements both covered by the test case ti and tj, i.e., 
Req(ti,tj)=Req(ti)∩Req(tj).  

Bigger |Req(GTC,ti)| is, more codes in slices of GTC and  ti 
are common.  

The test cases in T are to be allocated into two sets 
individually: Right or Wrong. If Req(GTC,ti)≠Ф, then the 
successful ti will be added in Right, while the failed one in 
Wrong. 

 Then we need to cross out the extra test cases from Right. If 
Req(GTC)=Req(ti), the requirements covered by GTC and ti 
are the same, then execution path of GTC and ti would be the 
same too, thus ti would do nothing to the following work. Cross 
out ti from Right. And if Req(ti)=Req(tj), two test cases cover 
the same requirements and they provide the same information.. 
When ti and tj both occur in Right, cross anyone out randomly. 
So does the Wrong. 
      The test cases in Right and Wrong will be ordered 

according to the number of |Req(GTC,ti)|, the maximum is 
the first, the minimum is the last.   
 

3. Sample program  
Let’s have a sample program to see how to manage the test 

suite [5], it will be further used to show how to prioritize the 
code and how to locate the bug in the following sections.  

The program in Figure 1 reads the lengths of three sides of a 
triangle, classifies the triangle, computes its area, and outputs the 
class and the area computed. Assume that a testing requirement 
corresponds to the statement coverage.  

s1: read(a,b,c); 
s2: class:=scalene; 
s3: if a=b or b=c 
s4:    class:=isosceles; 
s5: if a=b and b=c 
s6:    class:=equilateral; 
s7: if a*a=b*b+c*c 
s8:   class:=right; 
s9: case class of 
s10:   right     :  area:=b*c/2; 
s11:   equilateral : area:=a*2*sqrt(3)/4 
s12:   otherwise :   s:=(a+b+c)/2; 
s13:               area:=sqrt(s*(s-a)(s-b)(s-c)); 
s14: end； 
        write(class,area); 

Fig1.  Example program 

An execution slice with respect to a given test case is the 
set of code executed by this test. Table 1 gives the test cases in T 
and its corresponding execution slice. The execution slice of 
each test case ti is namely Req(ti). The program produces correct 
outputs on all test cases except t5. Because s11 uses the 
expression a*2 instead of a*a. The result is marked grey in 
Table1. The associated testing set Test(ri) listed in Table 2 can 
be easily deduced from Table1. 

Table 1.  The output and requirements satisfied by each 
test case 

Test suite Req(ti)  
(execution slice of ti) 

Output 
ti a b c class area 
t1 2 2 2 1,2,3,4,5,6,7,9,11,14 equilateral 1.73 
t2 4 4 3 1,2,3,4,5,7,9,12,14 isosceles 5.56 
t3 5 4 3 1,2,3,5,7,8,9,10,14 right 6.00 
t4 6 5 4 1,2,3,5,7,9,12,14 scalene 9.92 
t5 3 3 3 1,2,3,4,5,6,7,9,11,14 equilateral 2.6 
t6 4 3 3 1,2,3,4,5,7,9,12,14 isosceles 4.47 

Table 2.  Associated testing set of  each statement 

Statement(ri) Test(ri) 
1 {t1,t2,t3,t4,t5,t6} 
2 {t1,t2,t3,t4,t5,t6} 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      500



 

 

3 {t1,t2,t3,t4,t5,t6} 
4 {t1,t2,t5,t6} 
5 {t1,t2,t3,t4,t5,t6} 
6 {t1,t5} 
7 {t1,t2,t3,t4,t5,t6} 
8 {t3} 
9 {t1,t2,t3,t4,t5,t6} 
10 {t3} 
11 {t1,t5} 
12 {t2,t4,t6} 
13 {t2,t4,t6} 
14 {t1,t2,t3,t4,t5,t6} 

 

4．Code prioritization methodology 
The techniques described in this paper are based on the 

following observations [5][6][9]: 
1) If a statement is not executed under a test case, it cannot 

affect the program output for that test case. 
2) Even if a statement is executed under a test case, it does 

not necessarily affect the particular output.  
3) The likelihood of a piece of code containing a specific 

fault is proportional to the number of failed tests that 
execute it. 

The likelihood of a piece of code containing a specific fault is 
inversely proportional to the number of successful tests 
that execute it. 

 
4.1. The program slicing technique 

An execution slice with respect to a given test case is the 
set of code executed by this test. Based on Observation 1), let’s 
have a look at t5’s execution slice, of which the statements are 
bold font in Figure 1. Control didn’t reach the statements 
8,10,12,13 during execution, we can be sure that the error could 
not be brought by those statements and must be in its execution 
slice. 

A dynamic slice uses dynamic analysis to identify all and 
only the statements that contribute to the selected variables of 
interest on the particular anomalous execution trace. In this way, 
the size of the slice can be considerably reduced, thus allowing 
an easier location of the bugs [8]. According to observation 2), 
t5’s dynamic slice is depicted grey in Figure 1, even statements 
2,3,4,7 are executed under t5 but do not affect variable area. So 
the bug must exist in the wrong output area’s dynamic slice 
with respect to t5.  

To obtain the dynamic slice, the execution history need to 
be saved firstly and then to recursively traverse the data and 
control dependence edges in the dynamic dependence graph of 

the program for a given test case. Although dynamic slice can 
exactly provide us the statements that do have an effect on the 
variables of interest, its calculation will exhaust many resources 
and much time. For inherent exactitude of dynamic slice, it can 
first of all reduce the searching domain largely comparatively to 
execution slice.  

Let’s use Egtc to stand for the dynamic slice of the given test 
case GTC.  The bug must in Egtc according to observation 1) and 
2). But Egtc may still contain too many codes, and finding out the 
fault in Egtc is still time-consuming.  
 
4.2. Assistant slice 

The execution slice can be directly recorded according to 
the execution history during the testing course, no extra 
resources are needed.  For further location, we need to introduce 
much more assistant information. execution slice technique is 
taken except for GTC.  

Select out first three test cases from Right , the execution 
slices with respect to them are represented as E1, E2 and E3 
individually. If Wrong≠Ф, select out the first one from Wrong 
and its corresponding execution slice is expressed as Ef. 

 
4.3. Code prioritization methodology  

We first construct the dices as follows: E123＝E1∩E2∩E3, 
E12＝E1∩E2, E1+2+3＝E1∪E2∪E3, E1+2＝E1∪E2. 
Obviously, E123

⊆ E12
⊆ E1 ⊆ E1+2

⊆ E1+2+3, the common 
codes with Egtc are gradually increasing by degrees from E123 to 
E1+2+3. 

Definition 2: Let Prior(X) be the possibility of containing 
bug in code segment X. 

The rationale behind observation 3) is that the more 
successful tests execute a piece of code, the less likely for it to 
contain any fault. So a requirement in Req(GTC) is more 
satisfied by the test cases in Right, less impossible the error code. 
Thus E123 is of most impossibility containing bug. Thus the 
likelihood of containing bugs for those dices is correspondingly 
proportional to the number of common codes with Egtc. 
Obviously Prior(E123)≤Prior(E12)≤Prior(E1)≤Prior(E1+2)
≤Prior(E1+2+3). 

While observation 4) means the more failed tests execute a 
piece of code, the more likely for it to contain any fault. We 
construct a dice P0＝Egtc∩Ef. We can conclude that P0 is the 
most suspicious domain of containing error. Prior(P0) is the 
highest. 

Prior(E123)≤Prior(E12)≤Prior(E1)≤Prior(E1+2)≤
Prior(E1+2+3)≤Prior(P0). 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      501



 

 

 

5. Key algorithms in fault location 
We do not know where the bug is before hand because of 

its randomness. The priority of each dice will be used in this 
section to concretely localize the fault.  

We present two methods to help programmers effectively 
locate the fault: ⑴ a refining method to exclude codes from 
being examined if P0 contains too many codes. ⑵ an 
augmentation method to include additional code based on direct 
data dependency for inspection if the bug is not in P0. 

 
5.1. Refining algorithm 

If the size of P0 is small enough, we will directly examine 
it to see whether the bug is in it. Otherwise, the searching 
domain will be gradually considered according to the priority.  

Suppose the bug is in P0 at this step. 
Based on observation 3), the code that is less likely to 

contain any fault will be subtracted from P0 according to the 
priority in turn. The dices are respectively constructed as follows: 
P5＝P0－E1+2+3, P4＝P0－E1+2, P3＝P0－E1, P2＝P0－E12, 
P1 ＝ P0 － E123. Based on this definition, we have 
P0 ⊇ P1 ⊇ P2 ⊇ P3 ⊇ P4 ⊇ P5. 

For the size of P5 is the smallest and the inspecting range is 
reduced to the most, consider it first. If the bug is not in P5, 
maybe too much code is excluded. Then P4 is the next one to be 
checked, followed by P3 and then P2, P1 at last P0.    

Fig2. Refining algorithm 

Let D5=P5, D4＝P4－P5, D3＝P3－P4, D2＝P2－P3, D1＝

P1－P2 and D0＝P0－P1. When P4 is being examined, it is 
convinced that there are no bugs in P5. It is clear that we only 
need to inspect the code in D4 for P4⊇ P5. Similarly, when 
examining the dice P3, P2, P1 and P0 separately, we only need to 
check Dk(k=3,2,1,0) accordingly. 

The refining algorithm is detailed in Figure 2. 
An important point worth noticing is that at the beginning 

of this section, we assume P0 containing the bug and then put 
our focus on how to prioritize code in P0 so that the bug can be 
located before all the code in P0 is examined. However, 

knowing the location of a bug in advance is not possible. If 
refining procedure stops at step (4), we have located the bug. 
Otherwise, the refining procedure stops at step (6) where all the 
codes in P0 have been examined.  

 
5.2. Augmenting algorithm 

If the bug is not found in the refining phase, we will then 
look over the remainder of  E gtc (i.e., E gtc－P0).  Let’s use R to 
represent the codes  in E gtc－P0. 

Definition 3: There exists a statement θ R∈ , it is said to be 
“direct data dependency” relation with P0 such that θ∝P0 if 
and only if: θ defines a variable x that is used in P0, or θ uses a 
variable y defined in P0. We say that θ is directly data dependent 
on P0. 

Instead of examining code in R all at one time (i.e., having 
code in R with the same priority), a better approach is to 
prioritize the code based on its likelihood of containing the bug 
in the augment phase. Even the bug is not in P0, the statement 
that is directly or indirectly data dependent on P0 is more 
suspicious for it to contain any fault than the others in R. 

Let’s construct the code segment B1, B2, B3,…B* in-order: 
If a statement in R is directly data dependent on P0, adding it into 
B1, and B2 is the union of B1 and additional code that is directly 
data dependent on B1,…Bk is the union of Bk-1 and additional 
code that is directly data dependent on Bk-1. When no more code 
can be included into Bk based on direct data dependency, then 
terminal status is named B*, that is Bk＝Bk－1. It is evident 

that *2 B...BBB 31 ⊂⊂⊂ .  

The augmentation algorithm is listed in Figure 3. 
（1) k=1，construct  A1＝B1＝{θ/θ∈R∧θ∝P0} 
（2) examine code in Ak to see whether it contains the bug 
（3) if YES，then STOP 
（4) k＝k＋1 
（5) Bk＝Bk－1∪{θ/θ∈R∧θ∝Bk－1}，Ak＝Bk－Bk－1 
（6) if  Bk＝Bk－1  then STOP  

Fig3.  Augmenting algorithm 

In augmenting process, we firstly try to localize the bug 
form B1 followed by B2… till B*. Additional suspicious code is 
gradually included that is data dependent on the previous 
augmented code segment. In each iteration when checking Bk, 
whose subset Bk-1  has been inspected and proved having no bug, 
so the better way is only need to check the code in Ak＝Bk-Bk－1. 
One exception is the first iteration where B1 is direct data 
dependent on P0. 

One important point worth noticing is that if the procedure 

（1) k＝5 

（2) construct D
k
 

（3) examine code in D
k 
to see whether it contains 

the bug 

（4) if  YES，then STOP 

（5) set k＝k－1 

（6) if k<0，then STOP 

（7) go back to (3) 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      502



 

 

stops at step (3), we have successfully located the bug. However, 
if the procedure stops at (6), we have constructed B* which still 
does not contain the bug. In this case, we need to examine the 
code that is in the failed dynamic slice E gtc but not in B* nor in P0 
(i.e., code in Egtc－P0－B*). Although in theory this is possible, 
our conjecture is that in practice it does not seem to occur very 
often. The data listed in Table 4 shows that most P0 contains the 
bug.  

Fig 4.  Fault localization strategy based on priority 
 

5.3. Incremental algorithm based on priority 
Now the whole process to locate the bug based on priority 

is described in Figure 4. We prioritize the code in a failed 
dynamic slice Egtc based on its likelihood of containing bug. The 
prioritization is done by first using the information of relation 
between test case and testing requirement obtained from the 
testing process in Section 4, then refining method in Section 5.1, 
and finally the augmenting method in Section 5.2. At the worst 
case, we have to examine all code of Egtc. We will respond to 
this concern in the next section.  

 Let’s come back to the program in Figure 1.  Egtc= 
{1,5,6,9,11,14}, Right={t2,t3,t4}, Wrong=Φ.  Select out the 
test cases t2, t3, t4 from Right, and their corresponding 
execution slices are E1,E2,E3 as depicted in Column 2 of 
Table 1. Then we can obtain E12=E123={1,2,3,5,7,9,14}, 
E1+2=E1+2+3={1,2,3,5,7,8,9,10,12,14}. Thus P0=Egtc, 
P5=P4= P3=P2= P1={6,11}, and only two statements left in 
P5, we can easily find the error code in s11. 

 

6.  Experiment 
The choice of faulty programs should represent both the 

program space and the fault space. In our experiment we 
introduce six module of Tower Simulator written in C language 
running Onyx. The test suite is created according to the method 
in [7]. Black-box test suites are first created, then more test cases 
are manually added in to ensure that each testing requirement 
(i.e. statement, branch, D-U pairs and so on) is covered by at 
least 10 different test cases.  A version of a base module is a 
mutant by seeding realistic faults into it randomly. We created 
1000 faulty versions of these modules by seeding individual 
faults into the code.  

Table 3. Relative data of the experimental program 

Table 3 gives the sizes of each base program and its test 
suite, Column 2 is the number of lines; Column 3 is the size of 
test suite and Column 4 is the number of program versions we 
introduced. 

Table 4 lists the position of the fault seeded and the phase of 
fault located in all versions in detail. Column 2 is the number of 
versions for each base program while Column 3 is the position 
where fault seeded in the versions: M stands for middle, F front 
and B bottom. The number of versions for fault located in 
different phases is presented in Column 3. 

From this table, we draw the following conclusion: 
• The phase of finding out the fault is irrespective to 

where the fault is.  
• The phase of fault located is concentrated on refining 

phase⑦. Of 1000 faulty program versions, we have the 
possibility 75.7% of finding out the bug in refining phase. 

• The possibility of P0 containing bug is very high. The 
percentage is 80.5%. That means in most cases, the fault can 
be found even the augmenting method has not yet carried 
into execution. 

• The worst case is that refining and augmenting 
procedure both failed. We find the fault at phase ⑨. This 
means the entire dynamic slice E has been checked. But it 
hardly happens practically for the probability is only 0.7%. 

• In our experiment, we never succeeded in locating 

Input：program P, its test suite T and corresponding test requirement set 
R，requirements set Req(ti) for each test case ti satisfies，a given failed 
test case GTC and its dynamic slice E gtc 
output：the code segment containing the bug 
algorithm： 
① for each requirement ri in R, construct associated testing set Test(ri) 
according to T, R and Req(ti).  
② if |Req(GTC)|=1,the only requirement covered by t contains bug，
then STOP. 
③ for each ti in T, classify  it into Right or Wrong in-order according 
to section 2.2 
④ select out first three test cases from Right， obtain the 
corresponding execution slices E1,E2,E3；If Wrong≠Φ, the execution 
slice of the first test case in Wrong is Ef.  
⑤ P0＝Egtc∩Ef. 
⑥ if the size of P0 is less than 20％ of Egtc, check it directly whether 
having bug; if found, then STOP. 
⑦ fault localization based on refining algorithm, if found, then STOP. 
⑧ fault localization based on augmenting algorithm, if found, then 
STOP. 
⑨   fault localization in E－P0－B* 

Program NoL |T| NoV 
VisualGen1 516 355 200 
VisualGen2 789 378 200 

VisualServer1 883 458 200 
VisualServer2 897 512 200 
ControlPannel 1022 532 100 

SimulatorServer 1232 479 100 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      503



 

 

the bug at phase ②. For our test suite is constructed to 
ensure every requirement be satisfied by at least 10 test 
cases.  
• Table 4. N versions of fault located in different phase 

Table 5 gives us the elaborate information in the refining 
procedure. The notation [a,b] in Column 1 represents the size of 
Egtc in terms with the percentage between a% and b%. While the 
notation βα /  means there are α  dices of present size at 
present phase and among these α  dices there are β  dices 
successfully located the bug. For example, 55/48 in grey in 
Table 5 means, out of 55 P0s, whose size is less than 20% of Egtc, 
48 P0s have  been directly located the bug. Most P0 is between 
30% and 80% of Egtc. So the refining phase is then to be adopted 
and only 952 P5s over 1000 versions need to be constructed. 
Most P5s’s size is between 0 to 20% and no P5 has a size more 
than 50% of Egtc. At this step, 127 P5s are found out the fault. So 
next step only 825(1000-48-127) P4s need to be constructed and 
D4 is further size reduced. 123 P4s are found out the fault. 
Similarly only 702 P3s need to be constructed, and so on. 

From P5 to P0, we only need check very few codes by and 
large in each step. Totally, we have found out the bug in 805 
versions in P0. At the same time, it implies examining code only 
in P0 cannot locate the bugs in 195 versions. Augmenting 
method is taken. 

Table 5. Distribution of  dice size and fault located in at 
refining procedure 

Percentag
e P0 D0 D1 D2 D3 D4 P5 

[0,20] 55/48 187/13 325/138 492/151 589/118 733/94 893/107 
[20,30] 75/- 21/- 27/6 47/36 113/45 55/21 36/17 
[30,50] 305/- - - - -/- 37/8 23/3 
[50,80] 503/- - - - - - - 
[80,100] 62/- - - - - - - 
Total 1000/48 208/13 352/144 539/187 702/163 825/123 952/127 

Table 6 presents the relative data in augmenting procedure. 
Good Ak means the fault is discovered at dice Ak. When 
inspecting the code in Ak, whereas Bk is indeed checked if k>1. 
According to the direct data dependent relation, priority is 
evaluated to the code in R. Basically A4 is the worst case that no 
more codes could be added in. Most Ak (or Bk) has a size less than 
20% of Egtc. If refining procedure failed, the augmenting method 
really works. 

Table 6. Size distribution of good Aks at augmenting 
procedure 

Percentage A0 B2 B3 B4 A*( k≥5) 
[0,10] 45 53 13 7 - 
[10,20] 37 6 5 2 - 
[20,30] 9 - - - - 
[30,100] - - - - - 
Total 91 59 18 9  
To conclude, our data indicates that the effectiveness of fault 

location. The size of dice being checked in each step is very 
small. At most cases, P0 contains the bug and augmenting 
procedure is not needed. Fortunately, we found that only 0.8% 
failed to locate the fault after refining and augmenting. Our 
incremental strategy is independent of the fault type, fault 
position and good expert knowledge of the program being 
debugged. It can be automated. 

 

7. Conclusion 
To a given test case GTC, fault location has to be 

proceeded when the output of a program is wrong. We first 
make full use of the information provided by testing process, 
three successful test cases and one more failed test case are 
selected out. Then the code is prioritized by the likelihood of 
containing bug. Some empirical observations and heuristic 
approach are combined with program slice technique to 
prioritize the code. The rational behind this is that the more 
successful tests execute a piece of code, the less likely for it to 
contain any fault, vice versa.  

We start with GTC’s dynamic slice, which only consists of 
the code influencing the wrong output variable. P0 is constructed 
with highest priority by separating Ef from Egtc. Then we follow 

Program NoV PoF Phase of Fault Located 
② ⑥ ⑦ ⑧ ⑨ 

1 70 M  2 60 5 1 
1 65 F  3 57 4  
1 65 B  3 59 5  
2 65 M  3 49 17  
2 65 F  3 46 16 2 
2 70 B  3 45 16  
3 65 M  3 47 12  
3 70 F  3 45 12  
3 65 B  2 45 13 1 
4 70 M  3 45 13  
4 65 F  1 43 11  
4 65 B  2 46 12  
5 35 M  2 26 10 1 
5 30 F  3 28 11  
5 35 B  3 30 8 1 
6 30 M  3 26 10  
6 35 F  2 30 7  
6 35 B  4 30 6 1 

Program 
1~6 

335 M  16 253 67 2 
330 F  15 249 61 2 
335 B  17 255 60 3 
1000   48 757 188 7 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      504



 

 

the refining procedure discussed in Section 5.1 to construct dices 
P5, P4, P3, P2 and P1 by subtracting the code from P0 based on 
priority gradually. We will check the dices from P5 to P0 in turn. 
If we cannot find the bug in P0, it implies we need to examine 
the code in R. In this case, we follow the augmenting procedure 
discussed in Section 5.2 to first construct B1 that is directly data 
dependent on P0. Even the bug is not in P0, the statement that is 
directly or indirectly data dependent on P0 is more suspicious for 
it to contain any fault than the others in R. Code prioritization at 
this phase is implemented according to the direct data dependent 
relation, thus B1, B2,… B* are constructed and checked in-order. 
If the bug is still not found, we then inspect the last piece of code 
in Egtc－P0－B*. 

In short, we propose an incremental fault location strategy 
based on the code priority, which is correspondent with the 
likelihood of containing bug. The most suspicious code is 
examined first, and then step-by-step to increase the searching 
domain by including additional code based on the priority. 

We conducted an experiment to show the effectiveness of 
our fault localization method. In most cases, the bug can be 
found in the refining phase or even before. The probability is 
80.5%. The worst situation is equal to examine the whole 
dynamic slice of given test case GTC when both refining and 
augmenting method are failed. But the chance for this is only 
0.8%. 

An interesting future study is to compare the effectiveness 
when adopting different slice techniques. For example, if E1, E2, 
E3 and Ef are all computed by dynamic slice technique, could 
the phase of fault location be brought forward? Even the phase 
were moved forward, could time and money be spared 
comparative to calculate the dynamic slices. Another interesting 
future work is to apply our method to industry projects to 
examine how much time programmers can save by using our 
method in locating bugs in comparison to other approaches.  

 
References 
[1]M Weiser. Programmers Use Slices When Debugging 
[ J ] .Communications of the ACM , 1982 , 25 (7) :46-452. 
[2]Li Bixin. Program Slice Technique and its Application in Object-
Oriented Software Metrics and Software Test[D]. Dissertation for PhD, 
School of Computer Software and Theory, Nanjing University, 2000.11: 
pp.62-67 
[3]H. Agrawal, J. R. Horgan, S. London, et al. Fault Localization Using 
Execution Slices and Dataflow Tests. Proceedings of the 6th IEEE 
International Symposium on Software Reliability Engineering, October 
1995, pp:143-151. 

[4] M.J. Harrold, R. Gupta, M.L. Soffa. A Methodology for Controlling the 
Size of A Test Suite, ACM Transaction on Software Engineering and 
Methodology, July(1993)270-285. 
[5]N. Mansour, R. Bahsoon. Reduction-based methods and metrics for 
selective regression testing. Information and Software Technology, 
44(2002)431-443 
[6]H. Agrawal, J.R. Horgan, E.W. Krauser, Incremental regression testing. 
Proceeding of the Conference on Software Maintaiance, 1993,pp.299-308. 
[7]M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the 
effectiveness of dataflow and control flow-based test adequacy criterions. 
In Proc. of the 16th Int’l. Conf. on software. Eng., pp. 191-200, May 1994. 
[8] H. Agrawal, R. A. DeMillo, and E. H. Spafford,  Dubugging with 
Dynamic Slicing and Backtracking, Software-Practice & Experience, 
23(6):589-616, June, 1996 
[9] W. E. Wong, T. Sugeta, Y. Qi, et al., Smart Debugging Software 
Architecture Design in SDL, in Proceedings of the 27th IEEE International 
Computer Software and Applications Conference, November 2003. pp. 
41-47.  

 

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      505


