
Enhancing the Human-Computer Interaction on Camera-Equipped
Mobile Phones

Jun Li
Graduate School of Science
and Engineering Department

University Of Toyama
3190 Gofuku, Toyama-shi, Toyama

Japan
lj@kllee.com

Zheng Tang
University Of Toyama

3190 Gofuku, Toyama-shi, Toyama
Japan

ztang@eng.u-toyama.ac.jp

Abstract: - Mobile phones interactions are mostly done via the buttons, thumbwheels or touchscreens. Thus, in this
s paper we present an approach for enhancing Human-Computer Interaction (HCI) on camera-equipped mobile
phones. By using this approach a user is able to interact with an application by moving the mobile phone. The
built-in camera is used to capture frame sequences while the movement and rotation are being estimated. The
movement and rotation data are used as an input for the application. In our approach, we present some method to
overcome the limitation of the mobile phone and further enhance the precision as previously reported by other
researchers. The algorithm used in estimating the 3D motion is the neuron network. To conclude, some examples
of the implementations using the proposed approach are discussed in this work.

Key-Words: mobile phone, camera, Human-Computer Interaction, neuron network

1 Introduction

Mobile phones have been adopted into our daily
life and it plays a more and more important role. In
addition to the standard voice function of a telephone,
the current mobile phones can support many
additional services such as game, Short Message
Service(SMS) for text messaging, email, packet
switching for accessing the Internet and Multimedia
Messaging Service(MMS) for sending and receiving
photos and videos. We also depend on it in managing
our personal day-to-day activity by using address book
and calendar functions available in the mobile phones.

 Mobile phones are becoming a personal
computer in both functionality and interaction. The
most common interaction is through buttons,
thumbwheel or touchscreens. In this paper we present
an approach for enhancing Human-Computer
Interaction (HCI) on camera-equipped mobile phones
which currently constitutes 85% of the market.

Our approach is to use the mobile phone's built-in
camera as the source of input. The user's physical
movement of the device is captured in frame sequence,
which is analyzed to determine scroll direction and
magnitude. The detected direction is sent to the event
handler exactly as a corresponding mouse event while
the magnitude is used to specify the current scroll
level. In addition, based on the determined 2D motion

data, we can also estimate user’s movement in 3D.
Fig.1 shows the diagram of interaction. For example
when a user plays some shooting game, it’s almost
impossible to click the direction button and the fire
button at the same time with one hand. But, by using
our approach a user can indicate the direction by
moving the mobile phone and at the same time he can
shoot by clicking the fire button with one hand. We
will introduce a demo of handwriting and a demo of
3D viewport control, which we implemented, too.

Fig. 1 Diagram of interaction

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 465

2 Related Work and Present Problem
There have been several studies in the past years that
have investigated the HCI of mobile phone. Several
projects have experimented using the camera on
mobile devices for tracking and augmenting reality
[3]. Rohs et al. [1] performed tracking based on
dividing incoming camera frames into blocks and
determined how the blocks move given a set of
discrete possible translations and rotations. On the
other hand, Drab, S. [2] uses his Projection Shift
Analysis algorithm to do the motion detection.
 Although a lot of researches have been done, it is
still difficult to implement a practical motion
estimation system which can run on a common mobile
phone, especially the 3D motion estimation and this is
mainly caused by the two biggest problems that will be
discussed below.

2.1 The Limitation of Mobile Phone
Actually the hardware has become more powerful than
ever. Considering the portability and the battery life,
the computation capacity of mobile phone is finite.
However the operations of edge detection, 2D motion
estimation and 3D motion estimation requires very
large computation capacity.
 In 3D motion estimation, geometric manipulation
such as sin(x) and floating-point is required. But not
all of these are currently being supported by most
mobile phones.
 Due to the mass matrix computation, the problem
of memory insufficient is often encountered. So, we
have to take a balance approach between the memory
usage, speed and precision.

2.2 The Complexity of Reality Environment
Variable factors from the environment contribute
towards the noise. The mentioned noise can be a result
of many actions, e.g. when a user is moving the device
and at the same time the focus object is as well
moving. As a result, this can cause a low precision and
even the wrong result. Severe lighting differences or
the low contrast of the environment can also reduce
the precision.
 The user’s movement is complex and fuzzy. So the
system needs more intelligence.

3 Motion Estimation
The objective of the mentioned “motion estimation” is
not to estimate the motion of object but the motion of
the camera.

 2D motions can be estimated by the following two
steps. The first step is to select some point in the frame
as feature point. Although there are many method
available for this selection, but in this proposal we are
using the edge detection method. The second step is to
estimate the direction and magnitude of movement by
comparing the feature point between frame t and
frame 1−t .
 3D motion estimation is more difficult than 2D
motion estimation. In our approach, first we divide the
whole frame into several regions and then estimate the
motion of each region.

3.1 Edge Detection
Edge Detection [5] [6] is the process of finding edges
in images. The goal of edge detection is to mark the
points in a digital image at which the luminous
intensity changes sharply. Sharp changes in image
properties usually reflect important events and
changes in properties of the environment. Several
algorithms have been designed to detect edges and the
complexity degrees ranges. As for our
implementation, we choose the Sobel.

In simple terms, the operator calculates the
gradient of the image intensity at each point, giving
the direction of the largest possible increase from light
to dark and the rate of change in that direction. The
result therefore shows how "abruptly" or "smoothly"
the image changes at that point and therefore how
likely it is for that part of the image to represents an
edge, as well as how that edge is likely to be oriented.
In practice, the magnitude calculation is more reliable
and easier to interpret than the direction calculation.

Mathematically, the gradient of a two-variable
function is at each image point a 2D vector with the
components given by the derivatives in the horizontal
and vertical directions. At each image point, the
gradient vector points in the direction of largest
possible intensity increase, and the length of the
gradient vector corresponds to the rate of change in
that direction. This implies that the result of the Sobel
operator at an image point which is in a region of
constant image intensity is a zero vector and at a point
on an edge is a vector which points across the edge,
from darker to brighter values.

Mathematically, the operator uses two 3×3 kernels
which are convolved with the original image to
calculate approximations of the derivatives - one for
horizontal changes and the other for vertical. If we
define as the source image, where as and
are two images which at each point contain the

A xG yG

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 466

horizontal and vertical derivative approximations. To
avoid using floating-point, we use Equation1 to
compute the grayscale value of A .

100
115930 bluegreenred

gray

AAA
A

++
= (1)

grayx AG ×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
101
202
101

 (2)

grayy AG ×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

121
000
121

 (3)

22
yxxy GGG += (4)

Fig.2 shows the demo of edge detection running on

our test device.

(a) (b)

Fig. 2 Edge detection

In some special status, the result of default Sobel
edge detection may be insufficient (Fig.3a) or
overabundant (Fig.3b). As illustrated in Fig.3a, there
are too less feature points to complete motion
estimation. On the other hand, the condition of in
Fig.3b returns too much feature points which will
exhaust the computation resources and cause the delay
of interaction.

(a) (b)
Fig. 3 Limit of edge detection

To solve this problem, a Threshold value T is

defined. If is less than xyG T , it will not be exported

as feature point . xyF

 (5)
⎪⎩

⎪
⎨
⎧

<=

>
=

)(0
)(1
TG

TG
F

xy

xy
xy

The Threshold value T is adjusted using Equation

5 in real time. TΔ is the bias, is the count of feature
point, is the minimum of N , and is the
maximum of . Therefor the count of feature point is
restricted within ~ . By using this method,
the precision is improved and the computation
resource is saved.

N
minN maxN

N
minN maxN

⎪
⎩

⎪
⎨

⎧

>Δ−
≤≤

<Δ+
=

)(
)(

)(

max

maxmin

min

NNTT
NNNT

NNTT
T (6)

3.2 2D Motion Estimation
To estimate the 2D motion, a comparison between
frame and frame t 1−t is needed. Intend that, the
maximum distance can be detected in pixel is i . A

)1*2()1*2(+×+ ii matrix is used to present the
direction and the magnitude. Here set , so is
a

xyD
4=i xyD

99× matrix, however what we actually used in our
implement is 10=i .
 In the frame , a feature point and its t 99× pixel
neighborhood are showed as Table 1. In the frame

1−t , the feature points in the same regions are showed
as Table 2.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 467

∑∑∑
= −= −=

=
1

4

4

4

4xyF l m
xyxy FD (7)

After calculating the Equation 7, find out the
maximum in . If is larger than
threshold, then it is the result, and its subscript shows
the vector of movement.

maxxyD xyD maxxyD

3.3 3D Motion Estimation
The usage of geometric method to estimate the 3D
motion is possible but taken into considerations the
limitations of mobile phone and the complexity of
reality environment it is difficult to be used in practical
method. Instead of using geometric method, we use
the neural network algorithm. The network can be
trained offline before using and this reduces the
computation requirement. Furthermore, by applying
the neural network method, there is no need for
geometric function and floating-point which are not
supported by most mobile phone. Using the neural
network algorithm also improves the fault-tolerance of
the system.
 The neural network algorithm is only used to
estimate the motion pattern, which has 12 kinds of
possibilities such as pan left, pan right, zoom in, zoom
out and etc.

3.3.1 Region Fragment

 1

Table 1 frame t

For using 2D motion data to estimate the 3D motion,
divide the frame into 9 regions (Fig. 4). Estimate the
2D motion of each region, and save the result in

which is a xyR 33× matrix and look like Table 3.

 1
 1

 1

Table 2 frame t-1 Fig. 4 region fragment

→ → ↗
→ → →
→ → ↘

Table 3 the vector of xyR

3.3.2 The Backpropagation Algorithm
The backpropagation algorithm [7][8] is a well known
learning algorithm for feed-forward neural networks.
The backpropagation neural network works in two
modes, a supervised training mode and a production
mode. The training can be summarized as follows:

Start by initializing the input weights for all neurons
to some random numbers between 0 and 1, then:
 1. Apply input to the network.
 2. Calculate the output.
 3. Compare the resulting output with the desired
output for the given input. This is called the error.
 4. For each neuron, calculate what the output
should have been, and a scaling factor, how much
lower or higher the output must be adjusted to match
the desired output.
 5. Repeat the process until error reaches an
acceptable value (e.g. error < 1%), which means that
the neural network was trained successfully, or if we
reach a maximum count of iterations, which means
that the neural network training was not successful.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 468

3.3.3 Network Training
For each of 12 possible motion pattern, record a set of

, and then use these data to train the
backpropagation neural network. After the training
phase, we can test it on the device.

xyR

4 Applications
The demo applications were implemented on the Brew
3.1 of Qualcomm and tested on W41h model of AU,
which has a 2.1 mega pixels built-in camera. The
programming language is C++ and the application size
is less than 200Kbyte. The system requirements of
hardware are more than 1Mbyte heap memory and
more than 0.3 mega pixels built-in camera.

4.1 Handwriting
Fig.5 shows a simple handwriting application. The
black square below the screen will move to the same
direction when a user moves the mobile phone. If user
holds down the select button and moves the device, the
blue trail will be drawn on the screen.

(a) (b)

Fig. 5 Demo of handwriting

4.2 3D viewport controls
Fig.6 shows the demo of 3D viewport control. User
can control the virtual camera in the 3D scene without
clicking any button such that the device is moved up or
down, left or right to pan the viewport and also
brought towards and further from the object in order to
zoom the viewport as well as to rotate the mobile when
a rotated image of the viewpoint is required.

Fig. 6 Demo of 3D viewport control

5 Conclusion
In this paper, we presented an approach to enhance the
HCI on Camera-Equipped Mobile Phones. We
proposed some feasible and efficient method to
implement the 2D and 3D motion estimation.
Although the performance of the current work is
satisfactory but there are areas in this work which can
be further improved for better performance and
reliability in order to provide a more pleasant and user
friendly interaction experience.

References:
[1] Rohs, M.: Real-world interaction with

camera-phones. International Symposium on
Ubiquitous Computing Systems. (2004).

[2] Drab, S., Artner, N.: Motion detection as
interaction technique for games & applications on
mobile devices. Extended Abstracts of
PERVASIVE: Workshop on Pervasive Mobile
Interaction Devices. (2005) 48-51

[3] D. Beier, R. Billert, B. Brderlin, D. Stichling, and
B. Kleinjohann. Marker-less vision based tracking
for mobile augmented reality, In The Second IEEE
and ACM International Symposium on Mixed and
Augmented Reality, IEEE, Inc., 2003. pp.258-259.

[4] Odobez J. and Bouthemy P. Separation of moving
regions from background in an image sequence
acquired with a mobile camera. In H.H. Li, S. Sun,
and H. Derin, editors, Video Data Compression for
Multimedia Computing, chapter 8, pages 283–311.
1997.

[5] Carron, T. Lambert, P., Color edge detector using
jointly hue, saturation and intensity. Image

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 469

Processing, 1994. Proceedings. ICIP-94., IEEE
International Conference

[6] Touzi, R. Lopes, A. Bousquet, P., A statistical
and geometrical edge detector for SAR images.
Geoscience and Remote Sensing, IEEE
Transactions on Vol.26, No.6, 1988, pp. 764-773

[7] Hecht-Nielsen, R, Theory of the backpropagation
neural network, Neural Networks, 1989. IJCNN.,
International Joint Conference on, Vol.1, 1989, pp.
593-605.

[8] D.E Rumelhart, G.E. Hinton, and R.J. Williams,
"Learning internal representations by error
propagation," D.E. Rumelhart and J. McClelland,
editors, Parallel Data Processing, Vol.1, Chapter
8, The M.I.T. Press, Cambridge, MA, 1986, pp.
318-362.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 470

