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Abstract: - In this paper, we propose an image reconstruction method utilizing an optimized adaptive interpolation 
kernel along with a 2D M-channel perfect reconstruction filter bank(M-ch PR-FB) structure. In particular, the 
proposed approach leads to sharper reconstructed images than a direct conversion, still preserving high frequency 
components of the original image by employing the subband processing of a 2D M-ch PR-FB. Finally, the image 
quality improved by the proposed approach is demonstrated by comparing with those of the direct conversion 
methods using the bicubic and adaptive 2nd Newton interpolation kernels. 
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1. Introduction 
 
Nowadays, advances in digital technologies enable us to 
communicate digital images and moving pictures in a short 
time. Those digital images can be displayed through 
various multimedia devices, and thus a high quality image 
reconstruction is necessary for those different multimedia 
devices. In particular, quality of reconstructed images depends 
on the interpolation methods applied to estimate the value of 
pixels not existing in the converted low-resolution image. 
More specifically, the well-known bilinear and bicubic 
interpolation methods may lead to some problems such as 
edge blurring and jagged noise. To solve them, a new 
adaptive interpolation method, based on 2nd order 
Newton polynomial, was developed recently to deblur 
edges in a real-time environment [1]. Also, it is known 
that the sinc-function is the ideal interpolation kernel from 
Nyquist–Shannon sampling theory point of view. 
However, it is difficult to employ in practice the ideal 
interpolation kernel due to some problems related with its 
practical implementation [2,3]. Hence, it has been 
required to derive a sampling function of finite length, 
similar to the sinc-function. For that purpose, a bifluency 
method by using the fluency theory [4,5] and a 
reconstruction method using two-variable interpolation 
functions [6] were reported. Those approaches yield better 
image quality than the bilinear and the bicubic methods, 
but the edge blur and jagged noise may still appear. To 
solve those problems, an adaptive interpolation kernel 
based approach, deforming the shape of two-variable 
interpolation kernels as the direction of the edges, was 
proposed [7], leading to sharper edges. However, the 
parameters determining the shapes of kernels need to be 
optimized to obtain better results. Recently, an optimized 
adaptive interpolation method based on the particle 
swarm optimization(PSO) was proposed [8].  

In this paper, we propose a new image reconstruction 
method using a 2D M-ch PR-FB along with an optimized 
adaptive interpolation kernel, where the edge blur and 
jagged noise can be reduced and the quality of the 
reconstructed image can be improved, preserving high 
frequency components of the original image employing the 
subband processing. This paper is organized as follows: 
In Section 2, an optimized adaptive interpolation kernel 
is described. Also, a 2D M-ch PR-FB structure is 
presented in Section 3. In Section 4, the quality of 
images reconstructed by the proposed method is 
compared with those by the direct conversion methods 
using bicubic and adaptive 2nd Newton  interpolation 
kernels. Finally, the conclusions are made in Section 5.  

 

2. Optimized adaptive interpolation kernel  
2.1. Derivation of the compactly supported 

sampling functions of degree 2 
 
According to the Nyquist–Shannon sampling theorem, 
bandlimited signals are exactly reconstructed by using 
the sinc function. This means that the signal is 
continuously differentiable. Also, it implies that 
discontinuous signals observed in edges of images can 
not be reconstructed perfectly by using the sinc function. 
Therefore, in this section, an optimized adaptive 
interpolation kernel using a compactly supported 
sampling function (CSSF) of degree 2 is explained, 
which is similar to the sinc function and is of finite 
extent [4]. Furthermore, the sampling function is 
derived by fluency theory [4, 5] as follows: 
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are called a B-spline basis of degree (m-1) [5]. 
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In (3), a piecewise polynomial of degree 2, )(3 tφ , is obtained 
by repeating two times convolution of )(1 tφ which is a 
piecewise polynomial of degree 1 defined in (4). 
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Also, (5) can be derived by using the relation between 
Fourier transform )(3̂ fφ  of )(3 tφ and )2/(3̂ fφ  as in (6). 
Furthermore, )(3

0],[ tsψ  in (7) can be rearranged by 
substituting (5) into (2).  
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Then, from the necessary condition that )(3
0],[ tsψ becomes a 

sampling function, ks k δψ =)(3
0],[ , each value of { }2

2)( −=λλb in 
(2) can be obtained. With these values, one of the compactly 
supported sampling functions of degree 2 can be derived as 
(8). By replacing the sinc function presented in [2] 
with )(3

0],[ tsψ , new sampling and interpolation kernels are 
presented in Table 1. Here, ),( jiG  are sampling pixels and 

),( yxF  are pixels of the output image. ),( yxN  consists of 
pixels in the neighborhood of interpolated pixels where 
sampling function, )(3

0],[ tsψ  is nonzero. 
 

2.2. Adaptive interpolation process    

An adaptive process applied to the interpolation kernel 
by using the compactly supported sampling function of 
degree 2 can be described as follows [8]: 
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In (9), the variance V of the difference values kd of  each 
sampling point and its 8 neighborhood pixels is calculated 
for determining whether each sampling point is near the 
edge of the original image or not. If  V  is higher than the 
threshold sV , the sampling point is near edge. If each 
sampling point is near the edge, the adaptive interpolation 

kernels can be used to calculate the value of the interpolated 
pixels. On the other hand, the interpolation kernels using 
CSSF of degree 2 as in Table 1 can be utilized. 
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For deforming adaptively the shape of the interpolation 
kernels, the contraction value kR  and the expansion value 

kaE of each axis on the sampling point aS  on Fig. 1 need to 
be calculated from (10) and (11), respectively. Here, maxD  is 
the maximal difference value, and maxG is the maximal 
value of 8 neighborhood pixels. Also, max, RVs  and maxE  
are the threshold value, the maximal contraction value, and 
the maximal expansion value, respectively. In particular, 
the expansion value 

kaE is updated L times to come up to an 
appropriate value. For example, in case of k=2, 

2aE becomes 
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Here, 
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, cb EE  and 
2dE  are the expansion values of 

neighbor sampling points cb SS ,  and dS  of aS  on Fig. 1, 
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Then, the expansion/contraction rate can be obtained from 
(13). Finally, the expansion/contraction rates in the direction 
of the interpolated pixel can be calculated from (14). Here, 
the interpolated pixel can be placed between the k-th and the 
(k+1)-th axes of 8 axes. The interpolation kernel in Table 1 
 

 

Table 1. 2D down-sampling and up-sampling formulas 
with kernel using CSSF of degree 2  
 

 
 

Fig.1. Calculation of the expansion value 
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is deformed as in Table 2. In particular, the shape of the 
adaptive interpolation kernel can be changed only in 
horizontal and vertical directions for the 2D M-ch PR-FB. 
 

Table 2. The adaptive interpolation kernel 
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2.3. Parameters optimization using PSO 
 
 An adaptive interpolation process controls adaptively 
the influence of pixels near the edge of the original 
image. However, it is possible to emphasize too 
strongly or too weakly due to experientially given 
parameter sets in the approach. Therefore, these 
parameter sets are required to be optimized for better 
results. In this section, an optimization method (i.e., 
particle swarm optimization) [9] for searching  
parameter sets maximizing PSNR (Peak Signal to 
Noise Ratio) of reconstructed images in a 2D M-ch 
PR-FB structure is described. Firstly, arbitrary 
parameters are preset. In Section 2.2, the parameter 
sets are maxmax ,, ERVs  and L , respectively. Next, the 
low resolution image can be obtained by sampling 
kernels with M scaling factor as in Table 1. When the 
image is enlarged to the original size by an 
interpolation process, it is compared with the original 
image. If the PSNR is the highest, the parameter sets 
are stored as the best values. Then this process is 
repeated for the fixed number of times. Here, the value 
of the parameter sets are obtained as follows: A particle 
is an each piece that searches through the predetermined 
search space. Particles behave according to rules 
incorporating its individual observation, memory and 
information shared among the group (swarm). Each particle 
has positional vectors xr , velocity vectors vr , a memory of 
its maximally evaluated coordinate pr and the best solution 
in the swarm gr . The next search point is obtained  by  

)1()()1( ++=+ tvtxtx rrr                          (15) 
Also, the velocity can be updated as 

)()()()1( 21 xgxptvtv rrrrrr
−+−+=+ λλ              (16) 

Here, positive numbers 1λ  and 2λ are randomly 
chosen. When the search point xr  is updated, the 
parameter setting will be tested by PSNR evaluation. 
After repeating the fixed number of times, optimized 
parameter sets will be converged to gr . 
 

3. 2D M-ch PR-FB structure 
 
A 2D M-ch PR-FB structure, separated into two directions 

with sampling and interpolation kernel is presented on Fig. 2. 
In this paper, the 2D non-uniform 4ch PR-FB with rational 
or irrational scaling factors proposed in [2] is further 
utilized for a 2D uniform M-ch PR-FB structure. Thus, 
scaling factors in each kernel are fixed to M. This structure 
has very considerable freedom for M>2 and can reduce 

round- off errors coming from irrational scaling factors. 
When signals are down-sampled, the signals should be 
bandlimited by using an anti-aliasing filter before 
sampling. Here, high frequency components of signals are 
removed by low pass filtering. Thus, it is impossible to 
reconstruct perfectly down sampled signals. However, a 
perfect reconstruction can be obtained by sending high 
frequency components of the original signal to another 
channel and synthesizing the decomposed signals through 
a subband processing in a PR-FB structure. In particular, 
sampling and interpolation kernels in a closed form are 
utilized in this paper, instead of designing a pre-filter or a 
post-filter for down sampling or up sampling, respectively. 
Sampling kernels and interpolation kernels summarized in 
Table 1-2 are used in the analysis part and the synthesis 
part of 2D M-ch PR-FB, respectively. In the 2D M-ch 
PR-FB, two dimensional images are processed in 
horizontal and vertical directions, respectively, while still 
preserving high frequency components through a subband 
processing for high quality image reconstruction. 
 

 Fig.2. 2D M-ch PR- FB structure 
 

4. Experimental results 
 

In this section, the simulation results are shown. The low 
resolution images down-sampled by a factor of 2 in 
horizontal and vertical directions from the original images, 
are reconstructed by using the bicubic and the adaptive 2nd 
Newton interpolation methods. Also, the quality of images,  
reconstructed by the proposed 2D PR-FB structure of 2ch 
(i.e., a scaling factor is 2) in each direction, is compared with 
those by the direct conversion methods using the 
bicubic and adaptive 2nd Newton interpolation kernels. 
Also, the Peak Signal-to-Noise Ratio (PSNR) can be 
calculated to evaluate  the quality of images, where  the 
PSNR is defined by  
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In (17), yx, denote the numbers  of  rows and columns of 
the images, respectively. ijij XX ,′ are the values of the pixel of 
reconstructed images and input images at point ( i, j ), 
respectively. Also, IMAX is the maximum value of pixels. 
In this experiment, the value is fixed to 255 due to using 
256 level (0-255) gray-scale images. Images on Fig. 3 were 
used as the experimental images, the size of which are 
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64 × 64 and 256 × 256. Parameters used in adaptive 
interpolation kernels are optimized by PSO method 
described in section 2.3. Optimized parameters, obtained 
by repeating 100 times PSO method with respect to each 
image of size 64×64 on Fig. 3 are shown in Table 3. The 
results obtained by using each reconstruction method are 
shown in Table 4. PSNR of images reconstructed by the  
proposed method (2ch) yields the highest. Also, the input 
images of  larger size lead to the higher PSNR. 

 

           
(a) Barbara              (b) Lena                 (c) Lake 

Fig. 3. Original images 
 

Table 3. Optimized parameters of original images 
 

 

The zoomed versions of the region specified in the image 
of 256×256 size and the frequency domain representation 
of the reconstructed “Barbara” image are shown in Fig. 
4(a)-(b). From the results of Fig. 4, we can see that the 
proposed method (2ch) yields clearer edges, and the 
frequency domain representation (dB) by the proposed 
method (2ch) is almost same as that of the original image. 
Those visual improvement and higher PSNR can be 
obtained by controlling the influence of pixels near the 
edges with an optimized adaptive interpolation and by 
preserving high frequency components of the original 
image with a 2D PR-FB structure as in Fig. 4(b). 

 

 

Fig. 4. (a) The zoomed versions and (b) frequency domain 
representation of the reconstructed “Barbara” image.   
  

5. Conclusions 
 

In this paper, we proposed an image reconstruction 
method utilizing a 2D M-ch PR-FB with an optimized 
adaptive interpolation kernel using compactly supported 
sampling function of degree 2. The experimental results, 

i.e., images reconstructed by the proposed approach, 
provide higher PSNR and show clearer edges than the 
direct conversion methods using the bicubic and 
adaptive 2nd Newton interpolation methods. Further 
utilization of the proposed approach for real-time image 
processing will be further investigated as a future work. 
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Table 4. Comparison of PSNR of reconstructed images 
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Images maxE  maxR  L  sV  
Barbara -0.0242 -0.0242 1 467.6343

Lena 0.0353 0.0577 1 321.2327
Lake 0.0152 -0.0282 1 371.3845

Method Original 
image Bicubic Adaptive 

2nd Newton 
Proposed 

(1ch) 
Proposed

(2ch) 

(a) 

  

(b) 

   

size Images Bicubic Adaptive 
2nd Newton 

Proposed
(1ch) 

Proposed
(2ch) 

Barbara 21.4295 23.2936 22.3739 23.5111 
Lena 21.4286 23.8055 22.6510 24.1616 

64
×
64 Lake 20.1256 21.6722 21.9369 23.7783 

Barbara 25.7046 27.8177 27.2230 28.8821 
Lena 26.4799 29.7575 28.4179 29.8624 

256
×

256 Lake 24.0696 26.2288 26.5107 28.0418 
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