
Enhanced Compositional Safety Analysis for Distributed Embedded
Systems using LTS Equivalence

HUI GUO, YOUNGSUL SHIN, WOO JIN LEE

School of Electrical Engineering and Computer Science
Kyungpook National University

1370 Sangyeok-dong, Buk-gu, Daegu
SOUTH KOREA

ghelic@gmail.com, luckybobo@naver.com, woojin@knu.ac.kr

Abstract: - Real-time systems such as aeronautic systems, medical systems, and nuclear power plant systems are
generally operated in a standalone mode. In the home network and ubiquitous computing systems, integrated
services related with several embedded systems are focused, which is called distributed embedded systems. Safety
issues of distributed embedded systems are very important since they are closely related to our living. In this
research, distributed embedded systems and its safety properties are described by Labeled Transition Systems
(LTS). For efficiently checking safety issues, we enhance the existing compositional safety analysis technique [10]
using LTS equivalence concept.

Key-Words: - Safety analysis, embedded systems, compositional analysis, LTS equivalence

1 Introduction
Distributed embedded software has been widely used
in our lives. The main task of distributed embedded
software is to engage the physical world, interacting
directly with sensors and actuators in distributed
processing nodes. Since even a simple failure of
software may lead to catastrophic consequences,
distributed embedded software must be extremely
reliable. Safety issues of these systems are very
important.

The architecture of distributed embedded system
can be described by a collection of primitive processes,
which communicate with each other in order to
provide the global behavior of the system. Behavior of
a primitive process can be described by a state
machine whose transitions are labeled by the actions
that the process can perform. Specifically speaking,
labeled transition system (LTS) is used to specify the
behavior of each primitive process. LTS is often used
to model the behavior of a synchronous
communicating process in distributed software.

Various static analysis techniques have been
proposed for verifying properties of distributed
systems. These include model checking [1],
inequality-necessary conditions analysis [2], data flow
analysis [3,4], explicit state enumeration [5,6,7,8], and
compositional reachability analysis[9, 10]. Among
these analysis techniques, our approach focuses on
compositional reachability analysis techniques,

especially based on property automata [10]. We adopt
and extend Cheung’s compositional safety analysis
technique. In Section 2, problems of current
approaches are discussed.

In this paper, LTS is also adopted to specify a
safety property. We propose an efficient approach to
specifying and verifying safety properties of
distributed embedded systems. An LTS component is
used to specify the behavior for each component
which comprises a system. The global behavior of the
system is defined by the composite LTS by composing
LTS models of the constituent components. A typical
problem with the generation of the global behavior of
a system is that the analysis complexity exponentially
grows as the number of the components is increased.
To cope with such problem, we adapt the
compositional reachability analysis technique with
reducing unrelated local transitions. At first, LTS
models are composed and reduced in the perspective
of a given property model. We provide an equivalence
checking algorithm and a compositional safety
analysis based on LTS equivalence concept.

The remainder of the paper is organized as follows.
Related works for LTS modeling and compositional
analysis techniques are described in Section 2. Section
3 provides system and safety property description
techniques. In Section 4, we describe an algorithm for
checking equivalence and inclusion between two LTS
models. In Section 5, compositional safety analysis

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 115

technique and procedure are described. In Section 6,
we perform experiments for gas oven systems with
several burners. Conclusion and future work appear in
Section 7.

2 Related Works
LTS computation model has been widely used for
specifying and analyzing distributed systems
[11,12,13,14,15]. To perform analysis based on LTS,
it is necessary to construct the whole behavior model
from the specification of the primitive processes. For
example, consider a system consists of n processes
whose behavior are specified by LTS1, LTS2, …, and
LTSn. The whole behavior of the system can be
described by the composite LTS which is constructed
by composing the LTS1, LTS2, …, and LTSn of its
constituent processes. This approach is generally
known as reachability analysis. A major problem with
reachability analysis is that the search space involved
can grow exponentially with the increase in the
number of concurrent processes.

To cope with this problem reduction techniques
have been proposed by reducing the search space.
These reduction techniques can be categorized into
two classes; reduction by partial ordering and
reduction by compositional minimization. In the
reduction techniques by partial ordering, the search
space is reduced by excluding the paths formed by the
interleaving of the same set of transitions [6,16]. In
techniques by compositional minimization, also
known as compositional reachability analysis, the
search space is reduced by compositionally
constructing the composite LTS where globally
observable actions are abstracted out [9,17,18,19].

We will adopt and enhance the compositional
reachability analysis since it is amenable to
automation and can reflect the architecture of
distributed software. In compositional safety analysis
method [10], safety properties are described by state
machines, called property automata, which is
augmented with a special undefined state (π). A
property automata is automatically transformed to its
corresponding image property automata by adding the
π state for capturing potential violation of safety
properties. For example, we want to check a safety
property which an event ‘on’ should be followed by
event ‘off’ in all cases. Fig. 1 (b) and (c) show
examples of property automata and its image property
automata, respectively.

Fig. 1 (a) shows a simplified system model, whose
main behaviors include on c d*. In the example
system, behaviors of the system do not have the safety
property. However, the violations of the safety
property in the model are not detected by the image
property automata. For rigorously checking safety
properties, the equivalence checking between safety
properties and the system model should be enforced.
We will provide an equivalence checking method and
a compositional safety analysis technique based on
LTS equivalence concept. Detailed analysis methods
and procedures are described in Section 5.

1 2
on

d

(a) A System Model 1

1 2

on

off

(b) A Property Automata

1 2

on

off

(c) An Image Property Automata

π

onoff

3

c

Fig.1 Examples of compositional safety analysis

3 Modeling System Behaviors and
Safety Properties
Suppose that we have a gas oven that can be
remote-controlled at home or outside using mobile
devices. This remote control system may be useful for
turning off the gas oven when we forgot to turn it off at
going outside or when we want to control the oven
remotely at home. However, it is unsafe to control a
gas oven remotely since we can not check its status
such as gas leakage and inflammable materials near it.
Therefore, for safety, we need some complementary
devices such as a flame detection sensor, which can
monitor the status of the gas oven. Fig. 2 shows the
overall structure of the gas oven that can be
remote-controlled. Now, is the gas oven system safe ?

Mobile Device
Home Gateway

Flame Detection Sensor

Gas Oven

Intranet

Internet / Wireless

Fig.2 An example of remote-controlled gas oven
system

Definition 1 A labeled Transition System (LTS)
An LTS is denoted by a 4-tuple (Q, Σ, δ, q0) where

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 116

- Q is a set of states,
- Σ corresponds to the set of event labels of the LTS,

which represents internal events or
communicating labels,

- δ ⊆ Q x Σ x Q, denotes a transition relation that
maps from a state and an event onto another state,

- q0 is an initial state.

In a LTS, all the states are considered as accepting
states. The parallel composition of two LTS models,
denoted by P || Q, models the synchronized behavior.
Local events behave independently while the shared
labels should be synchronized.

Fig. 3 represents the block diagram of the
remote-controlled gas oven system. For simplicity, we
describe only core components in abstract form. The
gas oven system is composed of a gas oven controller,
a valve controller, and a flame detection sensor. Fig. 4
(a) through (e) show a LTS model of the
remote-controlled gas oven system. Each component
of the system is described by LTS.

Valve
Controller

Flame
Sensor

Gas Oven
Controller

Communication
Media

Mobile
Device

vCon = { von, voff } , fCon = { fd, not_fd } , gCon = { gon, goff } , cCon = { con, coff }

vCon

fCon

gCon

cCon

Fig.3 A block diagram of the remote-controlled gas
oven system

Safety properties should be always satisfied in a
system model. When they are not satisfied, there may
be catastrophic consequences such as lost of lives and
money and threat to environment. Safety properties
can be represented by a sequence of events or be
related with system states. And they can be described
in positive form or negative form. In this paper, we
support state-based property and event-based property
in both the descriptions by extending property
automata description technique [10]. Safety properties
are also represented by LTS. But, there is a difference
of LTS system modeling and property modeling. That
is, a safety property has not all accepting states but
some accepting states. Safety properties are described
as a sequence of events. For example, after gas valves
are opened, they should be closed (SP1 : von voff).

Analysis of safety properties is performed in two
ways. Negative safety properties can be checked

whether the corresponding positive behaviors of a
negative safety property can be occurred in the system
model or not. In the case of positive safety properties,
the behavior of a safety property should be always
satisfied in the system model. Therefore, the
satisfaction of a safety property can be checked
whether abstracted system behaviors are equivalent to
its behaviors. Fig. 4 (f) represents the safety property
models of SP1. In the figure, double circled states
means the accepting states.

(a) Flame Detection Sensor

(b) Valve Controller

(e) Gas Oven Controller

I0
fd not_fd

von

voff

gon
goff

von

not_fd

goff

voff

voff

fd

(c) Communication Media

con

gon

(d) Mobile Device

con

coff

coff

goff

goff

V0 V1

C1 C2C0

M0 M1

O0

O1

O2

O3
O4

von

voff

(f) Safety Property (von voff)

 Fig.4 An LTS model of a gas oven system

4 Equivalence Checking of LTS models
In this section, we provide algorithms for checking
observational behavior inclusion and equivalence
between two LTS models, which is based on the weak
bi-simulation concept of Milner [21]. Inclusion and
equivalence of LTS models are checked by comparing
the reachable trace sets of two models. Definition of
reachable traces is given as follows.

Definition 2 A Reachable Trace
A reachable trace is composed of a sequence of
consequent transitions which may be terminated or
have an inner loop to a previous transition.

Since reachable trace can be terminated or make a loop,
they are finite. And a system model has a finite set of
reachable traces. Reachable traces can be generated by
depth-first traversal algorithms. The set of reachable
traces corresponding to the gas oven controller, as
shown in Fig. 4(e), is represented as follows. Each

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 117

trace is described as a consequent pair of a state and a
transition.
Tr(Gas Oven Controller) = { O0 –con-> O1 –coff-> O0,
O0 –con-> O1 –von-> O2 –fd-> O2, O0 –con->O1
–von-> O2 -not_fd-> O3 -voff-> O1, O0 –con->O1
–von-> O2 -not_fd-> O3 -coff-> O0, O0 –con->O1
–von-> O2 -coff-> O4 -voff-> O0}
For checking inclusion of two model, tr(Α) ⊆ tr(B),
each reachable trace of model A should be appeared in
the model B. Appearance of a reachable trace is easily
checked by traversing the trace in the model B.
Behavioral equivalence between A and B models can
be checked by performing inclusion checking both of
tr(Α) ⊆ tr(B) and tr(Β) ⊆ tr(A).

5 Compositional Verification of Safety
properties
For effective analysis, it is important to minimize the
state space of a system model by localizing and
reducing features unrelated to safety property. During
making a reduced model by compositional approach,
local transitions except the referenced transitions in
the safety property are abstracted by the λ−elimination
rules of transformations from a λ−acceptor to a λ−free
machine [20]. Fig. 5 shows the overall procedure of
our algorithm. In the start of analysis procedure,
system model and safety property are composed since
we need the same reference points between two
models for easily finding corresponding ones. During
reduction procedure, state variables and transitions of
the property model are preserved.

Safety properties are categorized into positive form
and negative form. Safety analysis is differently
performed according to its form. Followings are
overall explanation of two safety analysis approaches.

- Negative safety property: For checking these

properties, we check whether the reversed
positive situation is occurred in the abstracted
system model against the safety property or not. If
the situation occurs, the property is not satisfied.
That is, we check tr(¬SafetyProperty) ⊆
tr(SystemModel ↑ α(¬SafetyProperty))

- Positive safety property: A safety property in
positive form means that the property should be
always satisfied in the system model. In this case,
we check the equivalence of property model and
abstracted system model against the property
model. That is, equivalence of tr(SystemModel

↑ α(SafetyProperty)) and tr(SafetyProperty) is
checked.

Checking inclusion and equivalence relations between
the system model and its safety property model can be
performed by generating and comparing their
reachable trace sets as described in Section 4.

LTS
Components

LTS
Components

LTS
Components

Safety
Property

Inclusion or
Equivalence

Check

Reduced
Model

Composition &
Reduction

Fig. 5 Safety analysis procedure of LTS models

(b) C1 | | GasOvenController

gon goff

(c) C2 = Abstraction of (b) (d) C4 = Abstraction of (C2 | |
ValveController | | FlameDetectionSensor)

gon=>λ

goff=>λ

von

not_fd

voff

voff

fd

(a) C1 = Abstraction of
(CommMedia | | MobileDevice)

von

not_fd

voff

fd

voff

λ

von voff λ von voff

(e) Safety Property

s0

s1

goff=>λ

goff=>λ

λ−loop

Fig. 6 Analysis steps of the safety property SP1

Fig. 6 shows the analysis steps of safety property
(SP2) using compositional analysis technique. Fig. 6
(a) shows the abstract model of (communication
media || mobile device), called C1. Fig. 6 (b)
represents the composed model of C1 and gas oven

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 118

controller component. In Fig. 6 (b), local transitions
such as gon and goff are transformed into λ transition
and eliminated by λ−elimination rules [20] such as
λ −loop elimination and λ−transition reduction (q0
=λ=> qt –s->q1 q0 –s-> q1) to become a model
shown in Fig. 6 (c). Through several composition and
reduction steps, as shown in Fig. 6 (d), the final
composed model C4 is generated. Finally, we compare
the final generated model and the safety property
model by comparing reachable trace sets. As shown in
Fig. 6 (d) and (e), two models have different reachable
trace sets. In consequence of analysis, we conclude
that safety property 1 is not satisfied in the system
behavior.

6 Experimental Result
For checking applicability of our approach, we
compared the numbers of generated states and
transitions of both FSM approach and our approach.
For scalability, we incrementally added the burner
controller to the original model. Table 1 shows the
comparative results. As show in Table 1, our approach
is more applicable to the large-scale systems than
existing FSM approach.

Table 1

FSM approach Our approach # of
Burner

of
Comp States(Trans) (SP1)

1 5 76(180) 2(3)
2 8 4104(15836) 27(79)
3 11 102320(534848) 131(474)
4 14 - 542(2320)
5 17 - 2231(10809)
6 20 - 8101(44816)

7 Conclusion
Safety issues are very important in embedded system
literature. In this paper, distributed embedded systems
such as remote-controlled embedded system are
described and analyzed by Labeled Transition
Systems. We enhanced the existing compositional
safety analysis technique using LTS equivalence
concept with preserving merits of original
compositional approach. In the future work, we will
add the timing concepts in our analysis approach.

References:

 [1] K. L. McMillan, Symbolic model checking,
Kluwer Academic Publishers, 1993

[2] G. S. Avrunin, et al., “Automated analysis of
concurrent systems with the constrained
expression toolset,” IEEE trans. software
engineering, Vol. 17, No. 11, 1991, pp. 1204-1222

[3] S. C. Cheung, J. Kramer, “Tractable dataflow
analysis for distributed systems,” IEEE trans.
software engineering, Vol. 20, No. 8, pp. 579-593

[4] M. B. Dwyer, L. A. Clarker, “Data flow analysis
for verifying properties of concurrent programs,”
Proc. of the 2nd ACM SIGSOFT Symposium on the
foundation of software engineering, 1994, pp.
62-75

[5] S. C. Cheung, J. Kramer, “Context constraints for
compositional reachability analysis,” ACM trans.
software engineering and methodology, Vol. 5, No.
4, 1996, pp. 334-377

[6] P. Godefroid, P. Wolper, “Using partial orders for
the efficient verification of deadlock freedom and
safety properties,” Proc. of the 3rd international
conference on computer aided verification, 1991

[7] D. Long, L. Clarke, “Task interaction graphs for
concurrency analysis,” Proc. of the 11th ICSE,
1989, pp. 44-52

[8] Al Valmari, et al. “Putting advanced reachability
analysis techniques together: The ‘ARA’ tool,”
Proc. of the FME, 1993, pp. 597-616

[9] W. J. Yeh, M. Young, “Compositional reachability
analysis using process algebra,” Proc. of ACM
SIGSOFT, 1991, pp. 49-59

[10] S. C. Cheung, J. Kramer, “Checking Safety
Properties using Compositional Reachability
Analysis,” ACM TOSEM, 1999, pp. 49-78

[11] S. Uchitel, et al., “Synthesis of behavioral models
from scenarios,” IEEE trans. on software
engineering, Vol. 29, No. 2, 2003, pp. 99-115

[12] C. Damas, et al., “Generating annotated behavior
models from end-user scenarios,” IEEE trans. on
software engineering, Vol. 31, No. 12, 2005, pp.
1056-1073

[13] H. Foster, et al., “Compatibility verification for
Web Service Choreography,” Proc. of ICWS, 2004

[14] J. Magee, et al., “Behavior analysis of software
architectures,” Proc. of the 1st Working IFIP
Conference on Software Architecture, 1999

[15] J.H.Lee, et al., “Formal verification of protocol
specified in LTS for railway signaling systems,”
Computers in Railways, 2004

[16] G. Holzmann, et al., “Coverage preserving
reduction strategies for reachability analysis,”
Proc. of the PSTV, 1992, pp. 349-364

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 119

[17] J. Malhotra, et al., “A tool for hierarchical design
and simulation of concurrent systems,” Proc. of
the BCS-FACS workshop on specification and
verification of concurrent systems, 1988, pp.
140-152

[18] K. K. Sabnani, et al., “An algorithmic procedure
for checking safety properties of protocols,” IEEE
trans. communication, Vol. 37, No. 9, 1989, pp.
940-948

[19] K. C. Tai, P. V. Koppol, “An incremental
approach to reachability analysis of distributed
programs,” Proc. of the 7th international
workshop on software specification and design,
1993, pp. 141-150

[20] P. J. Denning, et al., Machines, Languages, and
Computation, Prentice-Hall, 1978

[21] Robin Milner, Communication and Concurrency,
Prentice Hall, 1989

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 120

