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Abstract: This work presents a general framework for modeling a distributed scheduling problem via fuzzy
constraint-based agent negotiation. Fuzzy constraints, in this way, are used not only to represent the require-
ments that jobs being scheduled must satisfy, but also to specify the possibilities prescribing to what extent the
solutions are suitable for scheduling to rank the solutions. Furthermore, fuzzy constraint-based agent negotiation
provides a systematic method to gradually relax the requirements to generate a local schedule, and then utilizes
possibility functions to select an alternative that is subject to the others’ acceptability. Each agent, who is in charge
of different aspects of the scheduling problem, not only distributively solves its problems to maximize its local ob-
jectives, but also iteratively proposes its local schedules with other agents to gradually move toward a satisfactory
and globally beneficial schedule. Experimental results suggest that the proposed approach is focused not only on
the minimization of parameters such as makespan and tardiness, but also on the economical effects to maximize
the profits of the enterprise.
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1 Introduction

Scheduling is a process to allocate limited resources
over time to satisfy a collection of jobs. But, real-
world scheduling problems are often inherently dis-
tributed, that is, constraints and preferences of each
entity in the problem might not be accessible to
each other. Thus, two major methodologies, dis-
tributed problem solving (DPS) and multi-agent sys-
tems (MAS), have been proposed to model distributed
scheduling problems.

In DPS approaches, the task of schedule is de-
composed into a set of sub-problems and solved by the
individual entities to achieve a global interest. How-
ever, the coordination strategy and information shar-
ing in DPS are usually incorporated into an integral
part of the system [1, 13]. Thus, it does not have
the sophisticated reasoning required for social inter-
action and cannot deal with the autonomous nature of
the components.

In contrast to DPS, MAS approaches solve the
scheduling problem via autonomous agents interac-
tion to maximize their own welfare. Based on some
negotiation strategies, agents act from their individ-
ual perspectives to negotiate with others to obtain a

compromise schedule. Yet they are not assumed to
achieve the common goal cooperatively. Several ne-
gotiation models of MAS have been proposed for the
scheduling problems [3, 10]. Among them, contract
net protocol, a commonly used negotiation model, in-
volves a process of task announcement, bidding, and
awarding to establish a deal among agents [12]. Rely-
ing on this protocol, several bidding-based or auction-
based approaches have demonstrated a flexible man-
ner for resources selection and allocation [4, 8, 10].
While these negotiation models are proved to be ef-
fective and easy to implement, a drawback of these
approaches is myopic, i.e. the choice of a resource is
usually based on a local evaluation, and it could fail to
support for more complex and less structured negoti-
ations.

This paper presents a general framework for
modeling a distributed scheduling problem via fuzzy
constraint-based agent negotiation. Fuzzy constraints,
in this way, are used not only to represent the re-
quirements that jobs being scheduled must satisfy, but
also to specify the possibilities prescribing to what ex-
tent the solutions are suitable for scheduling to rank
the solutions [2, 5]. Furthermore, fuzzy constraint-
based agent negotiation provides a systematic method
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to gradually relax the requirements to generate a pro-
posal, and then utilizes possibility functions to select
an alternative that is subject to the others’ acceptabil-
ity [6, 7, 9]. Each agent, on behalf of each entity in-
volved in the scheduling, iteratively proposes its of-
fers in order to gradually move toward a satisfactory
schedule. The iterative nature of agent negotiation
process forces the convergence between demand and
offer. Thus, each agent, who is in charge of different
aspects of the problem, not only distributively solves
its problems to maximize its local objectives, but also
works together with other agents to attain a globally
beneficial schedule. Experimental results suggest that
the proposed approach is focused not only on the min-
imization of parameters such as makespan and tardi-
ness, but also on the economical effects to maximize
the profits of the enterprise.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the theoretical basis of
modeling distributed scheduling as agent negotiation.
Section 3 presents the negotiation process for obtain-
ing the scheduling solutions. Section 4 demonstrates
the effectiveness of the proposed approach followed
by some conclusions in Section 5.

2 Distributed scheduling via Agent
Negotiation

Planning a schedule among a set of entities can be
modeled as agent negotiation in that finding a satis-
factory scheduling solution in a distributed environ-
ment is the same as reaching an acceptable agree-
ment in agent negotiation. Furthermore, fuzzy con-
straints have also been used to represent the require-
ments that jobs being scheduled must satisfy [2, 5].
Thus, a distributed scheduling problem can be for-
mulated as a distributed fuzzy constraint satisfaction
problem (DFCSP) and its graphical representation, a
distributed fuzzy constraint network (DFCN) adapted
from [7], can be defined as below.

Definition 1 (Distributed fuzzy constraint network)
: A distributed fuzzy constraint network (U ,X,C)
can be defined as a set of fuzzy constraint networks{
N1, ..., NL

}
, Nk = (Uk,Xk,Ck) being an FCN k,

where

• Uk is a universe of discourse for an FCN k;

• Xk is a tuple of nk non-recurring objects
Xk

1k , . . . , Xk
nk ;

• Ck is a set of mk ≥ nk fuzzy constraints, which
is the union of a set of internal fuzzy constraints

Cki existing among objects in Xk and a set of ex-
ternal fuzzy constraints Cke referring to at least
one object in Xk and another not in Xk ;

• Nk is connected to other FCNs by Cke;

• U is a universe of discourse;

• X =
(∪L

k=1X
k
)

is a tuple of all non-recurring
objects;

• C =
(∪L

k=1C
k
)

is a set of all fuzzy constraints.

That is, each individual fuzzy constraint network
Nk = (Uk,Xk,Ck) in a DFCN can be the represen-
tation of job, resource, or some other forms of agents
in a distributed scheduling problem. Then, the task of
distributed scheduling is to attain a schedule that can
satisfy all the fuzzy constraints in C simultaneously.
The job and resource agents can be further defined as
follows.

Definition 2 (Fuzzy constraint network for a job
agent) : A job agent kJ

i , which involves a set of activ-
ities required by job Ji and concerns with temporal,
precedence, required resource, and problem-specific
constraints, can be represented as a fuzzy constraint
network NkJ

i = (UkJ
i ,XkJ

i ,CkJ
i ), where

• XkJ
i is a tuple of the objects of job agent kJ

i , in-
cluding start time si and end time ei associated
to job Ji as well as start time sij , end time eij ,
and required resource rij associated to activity
aij ∈ Ji.

• CkJ
i is a set of the fuzzy constraints of job agent

kJ
i , in which

Ctmp represents the temporal constraint which
the job has to be started after the release date
and finished before the deadline. For job Ji,
Ctmp(i) implies start time si has to be later than
release date R̃i, and end time ei has to be earlier
than due-date D̃i. Release date and due-date are
often subject to preference and are modeled by
fuzzy number(fuzzy duration/fuzzy constraint).

Ctmp(i) :si ∈ [R̃i,+∞), si = min sij , ∀aij ∈ Ji,

ei ∈ (0, D̃i], ei = max eij ,∀aij ∈ Ji

(1)

Cpre represents the precedence constraint which
defines the preceding restriction between two ac-
tivities. Cpre(ij−>iq) implies that activity aij has
to be performed before activity aiq.

Cpre(ij−>iq): eij ≤ siq (2)
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Creq represents the required resource constraint
which defines the set of possible resources are
required by an activity. Creq(ij,H) implies that
activity aij can be performed by a set of alterna-
tive resources Hij . For each candidate resource
Rh ∈ Hij is held by resource agent kR

h .

Creq(ij,H): rij = Rh, Rh ∈ Hij (3)

Definition 3 (Fuzzy constraint network for a re-
source agent) : A resource agent kR

h , which holds
resource Rh and concerns with processing time,
capacity, and problem-specific constraints, can be
represented as a fuzzy constraint network NkR

h =
(UkR

h ,XkR
h ,CkR

h ), where

• XkR
h is a tuple of the objects of resource agent

kR
h , including start time shj , processing time phj ,

and end time ehj associated to activity ajh which
requires resource Rh.

• CkR
h is a set of the fuzzy constraints of resource

agent kR
h , in which

Cpro represents processing time constraint
which defines the possible duration of processing
time for an activity. Durations are determined by
tuning the machine or allocating the amount of
resources. Cpro(hj) implies that the processing
time phj of activity ahj are bounded by possi-
ble duration P̃hj which is represented as a fuzzy
number.

Cpre(hj): ehj = shj + phj , phj ∈ P̃hj (4)

Ccap represents the capacity constraint which
limits the available capacity of resource over
time. Ccap(hj,hq) implies that the processing
times of activities ahj and ahq which are per-
formed on the resource Rh, cannot overlap on
times.

Ccap(hj,hq): shj ≥ ehq or shq ≥ ehj (5)

When planning a schedule, both the job agents
and resource agents govern activity by maintaining
the consistency of inter-constraints Cjr(ijh), which
requires that activity aijh, performed by a resource
agent kR

h , has to start and finish within a specified time
window [sij , eij] assigned by a job agent kJ

i , where

Cjr(ijh): shj ≥ sij and ehj ≤ eij (6)

For evaluating and find more satisfactory sched-
ules, the aggregated satisfaction value of the local
schedule is defined as follows.

Definition 4 Given an local schedule U involving a
number of objects (x1, . . . , xn), the aggregated satis-
faction value of an local schedule U to agent k, de-
noted by Ψk (U) , can be defined as a function of the
values of satisfaction with the objects as follows:

Ψk (U) =
1
n

∑n

j=1
µCk

j
(xj), (7)

where µCk
j
(·) is the satisfaction degree of the con-

straint Ck
j of agent k over objects j.

Ψk (U) can be viewed as a constraint among the
objects to represent the preference over the combina-
tion of objects, and determine whether to accept or
reschedule conflicting events. Thus, Ψk (U) is used
by agent k to make trade-offs among objects for local
schedules, and also regarded as an objective function
to measure the quality of the local schedule U pro-
duced by the agent k.

For each job and resource agent, which is model-
ing as fuzzy constraint satisfaction problem (FCSP),
the local schedule U is sequencing of activities with
minimizing violation degrees of constraint satisfying.
For solving FCSP to generate the feasible local sched-
ules Bk

u for each agent, a branch and bound algorithm
is adopted. Pruning will occur when constraints vio-
lated degree of partial sequencing u is lower than the
α-cut. And only the local schedule U which satisfac-
tion degree is greater than or equal to threshold Ψk

th

should be selected into Bk
u.

However, maintaining the consistency of activ-
ities by job agents may incur constraint violations
for resource agents and vice-versa. Thus, negotia-
tion mechanism is employed to resolve the conflicts
among the agents. Yet, how does the agent negoti-
ate with other agents to decide its local scheduling so-
lution to reach an agreement that benefits all agents
with a high satisfaction degree of fuzzy constraints,
and move toward the deal more quickly?

To that end, the negotiation strategies are adopted
by agents to determine the negotiation process in
scheduling. These strategies determine how agents
evaluate and generate local schedules to reach an
agreement that is most in their self-interest or per-
form global goals. Agents exchange local schedules
throughout the negotiation according to their own ne-
gotiation strategies. Whenever an local schedule is not
acceptable by other agents, they make counter-offers
by making concessions or by finding new alternatives
to move toward an agreement. Hence, a concession
strategy is presented, and a trade-off strategy is pro-
posed to find alternatives.

In a scheduling process, agents employ the con-
cession strategy to compromise their private schedules
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which are movable. Agents attempt to entice one an-
other into agreement by manipulating the ranges as-
sociated with a given constraint in a scheduling prob-
lem. Hence, the set of feasible concession scheduling
proposals for agent k at a threshold αk

i is defined as
follows.

Definition 5 (Set of feasible concession scheduling
proposals) : Given the latest scheduling offer u and a
threshold αk

i of agent k, the set of feasible concession
scheduling proposals at the threshold αk

i for the next
offer of agent k, denoted by αk

i
Ck

u, can be defined as

αk
i
Ck

u =
n
v |
�
µCk (v) ≥ αk

i

�
∧
�
Ψk(v) = Ψk(u)− r

�o
,

(8)

where r is the concession value.

The agent’s concession value r for its next offer
may be determined from the agent’s mental state and
the opponent’s responsive state.

Besides, agents employ the trade-off strategy to
reschedule the private schedules without reducing sat-
isfactions. Agents attempt to entice one another into
agreement by reconciling their constraints. An alter-
native solution, which is above or equal to a certain
threshold, is proposed to the opponent from a certain
solution space. Hence, the set of feasible trade-off
scheduling proposals is defined as follows.

Definition 6 (Set of feasible trade-off scheduling
proposals) : Given the latest scheduling offer u and
a threshold αk

i of agent k, the set of feasible trade-off
scheduling proposals at the threshold αk

i for the alter-
natives of agent k, denoted by αk

i
Tk

u, is defined as

αk
i
Tk

u =
n
v |
�
µCk (v) ≥ αk

i

�
∧
�
Ψk(v) ≥ Ψk(u)

�o
.

A normalized Euclidean distance can be applied
in establishing a trade-off strategy to measure the sim-
ilarity between alternatives, and thus generate the best
possible scheduling offer. This function tends to dis-
tinguish options whose satisfaction values are rela-
tively close. Hence, a similarity function is defined
as follows.

Definition 7 (Similarity function) : Assuming that
U′ = (u′1,... ,u′n) is the set of offers proposed by n
other agents, and V =(v1,... ,vn) is a feasible trade-
off scheduling proposal of agent k for n other agents,
the similarity function between V and U′ on the ne-
gotiated issues for agent k, denoted by Θk(V,U′), is
defined as

Θk(V,U′)

= 1− 1

n

nX
j=1

(
1

m
(

mX
i=1

�
µCk

i
(vj)− µCk

i
(u′j) + pCk

i
(u′j)

�2

)
1
2 ),

(9)

where m is the number of fuzzy constraints of agent
k on issues, µCk

i
(vj) and µCk

i
(u′j) denote the satis-

faction degree of the ith (weighted) fuzzy constraint
associated with the vj and the u′j for agent k to agent
j, and pCk

i
(u′j) denotes the penalty from the ith dis-

satisfied (weighted) fuzzy constraint associated with
the offer u′j made by agent k.

For each feasible trade-off scheduling proposal v
of an agent, a fuzzy similarity between any v and the
scheduling offer u′ proposed by the opponent can be
defined as a fuzzy set in which the membership grade
of any particular v represents the similarity between
v and u′. Hence, the expected trade-off scheduling
proposal U∗ that benefits all parties can be defined as
follows.

Definition 8 (Expected trade-off scheduling pro-
posal) : Assuming that agent k proposes a scheduling
offer U to its opponents, and that the opponents sub-
sequently proposes a set of scheduling counter-offer
U′ to agent k, the expected trade-off scheduling pro-
posal U∗ for the next scheduling offer by agent k is
defined as

U∗ = argV

0@ max
v∈

αk
i

Bk
u

Θk �V,U′�1A , (10)

where αk
i is the highest possible threshold such that

αk
i
Bk

u 6= {} and Θk (V,U′) > Θk (U,U′) .

The constraint Θk (V,U′) > Θk (U,U′) is used
to ensure that the next scheduling solution is better
than the previous solution. Thus, based on the fuzzy
similarity, an agent can use a trade-off strategy to gen-
erate a scheduling proposal that may benefit all parties
without lowering the agent’s requirements. Thus, by
trade-off negotiation in a scheduling problem, agents
can reallocate their initially assigned resources when-
ever timing of the jobs is undesirable.

Different combinations of strategies can be ap-
plied to cooperative or competitive situations. Hence,
the trade-off strategy and/or concession strategy can
be further meshed and ordered into a meta strategy M
over the whole scenario of negotiation.

3 Negotiation Process

A solution of distributed scheduling can be obtained
via fuzzy constraint-based agent negotiation by main-
taining the satisfiability of both inter-agent and intra-
agent constraints. Agents take turns to propose lo-
cal schedules to explore potential global schedules,
thereby moving the negotiation toward a consensus.
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01 i = 1;  1.0; 1.0;Deal False; Failure False;

02 repeat

03   if Receive "Tell(U',K',k)" then

04      if (U') (U) and (U') then

05         Deal True;

06      else

07         ;

08         while

k k
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09             if {} then

10                 U* _ ( , );

11                 if U* {} then

12                     exit; end if;
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M  then

15                     ;

16                     LocalSch( , , U', ); end if;

17                 if Chk_tra( ) = True then

18                     LocalSch( , , U', );
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th th

k k k
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r

u

u
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M
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1

end if;

19                 if {} then

20                     ;  

21                     if  then

22                         Failure True;  

23                         exit; end if; end if;

2

k
i

k

k k

i i

kk

i

u
B

kC

4         end while; 

25         if (U') (U*) and (U') then

26             Deal True;

27         else

28             Tell(U*,K,K');end if;end if;

29 until Deal = True or Failure = True;

k k k

i

Figure 1: Agent behavior for scheduling.

The process of each agent’s behavior for scheduling
is shown in Fig. 1.

Given the local schedule (time interval of activi-
ties) U′ = {uk1 , ...,ukJ} from agents K ′, each agent
k find the solution concurrently and independently for
obtaining the feasible solution. Using Definition 8,
a local schedule U∗ = {u∗k1 , ...,u∗kJ} would be se-

lected from the feasible schedules Bk
u and proposed

to the corresponding agents K ′ (in line 10). To ensure
that the next local schedule solution U∗ is better than
the previous solution U for gradually converge, the
constraint Θk (U′,U∗) > Θk (U′,U) has to be satis-
fied. If no solution found (in lines 13 to 23), agent k
will relax the constraint to the next acceptable thresh-
old Ψk

i+1 to create a new feasible solution space Bk
u

(Bk
u = Ck

u, in lines 14 to 16) by concession strategy
(Definition 5); or will create a new alternative solu-
tion space Bk

u (Bk
u = Tk

u, in lines 17 and 18) by
trade-off strategy (Definition 6). Solution space Bk

u
is obtained from LocalSch which adopt a branch and
bound algorithm. Strategies will be decided along the
meta strategy M of agent k (in line 7). If agent k faces
no feasible proposal that matches the expected satis-
faction value at the threshold αk

i , with the capability
of self-relaxation, the agent lowers its threshold of ac-
ceptability to the next threshold αk

i+1 until it generates

an expected offer U∗ or the threshold is less than δk

(in line 19 or 23) in which case the negotiation fails
and terminates.

4 Experiments
In what follows, we conduct several experiments to
compare the effectiveness of our model with contract
net protocol-based negotiation (CNP), extended con-
tract net protocol negotiation (ECNP), and a well-
known priority rule, longest processing time (LPT)
[4, 11]. The manufacturing problem composed of
five shops, each equipped with predefined resource
and processing time is deterministic. The number of
orders (jobs) is varied from 5 to 15 to examine the
effects of the conflicts which arise between the de-
mands of orders and the production capacities in the
resources. Results are averaged over 100 different
randomly generated data sets in which consist of the
requirements from orders, including the unit price and
delivery date. For simplicity, all agents employ a fixed
concession strategy with 0.1 urgency value.
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Figure 2: Performance comparison in makespan and
customer satisfaction of delivery date.

In the experiment, the proposed approach along
with LPT, CNP, and ECNP approaches are evaluated
by the scheduling performance and customer satisfac-
tion. We first evaluate the minimize makespan and
maximize customer satisfaction of delivery date when
the cost is limited, and the results are shown in Fig. 2.
On the other hand, Figure 3 illustrates the results of
an experiment to balance the profit and customer sat-
isfaction when minimizing the production cost. Both
in Figures 2 and 3 show that LPT and CNP have infe-
rior performance and higher disturbance in all criteria
when number of orders (demand conflicts) is increas-
ing. Through iterative bidding, ECNP is more aware
about resource contention and performs better than
LPT and CNP. However, these approaches with local
decision cannot guarantee the overall system perfor-
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Figure 3: Comparison in manufacturer profit and cus-
tomer satisfaction of unit price.

mance. On the other hand, the results demonstrate
that our approach not only yields a shorter makespan
(as shown in Fig. 2 (a)), also respects the tardiness of
orders to improve the customer satisfaction in delivery
date (as indicated in Fig. 2 (b)). Furthermore, it also
show that the proposed approach is more profitable (as
indicated in Fig. 3 (a)), and maintains customer satis-
faction in unit price as higher as possible (as indicated
in Fig. 3 (b)). In other words, through interactive ne-
gotiation, the proposed approach can reflect the dif-
ferences in the constraint violations to other agents.
Meanwhile, by evaluating the similarity of schedule
and demands, it also provides a guideline for generat-
ing counteroffer to improve the convergence and solu-
tion quality.

5 Conclusions
This paper has presented a novel framework to plan-
ning a schedule via fuzzy constraint-based agent ne-
gotiation. The gradual relaxation and evaluation
method with iterative negotiation process enables par-
ticipants in distributed scheduling to progressively
move toward a globally satisfactory schedule. The
experiments have been utilized to demonstrate the ef-
fectiveness of our model. While the proposed model
yielded some promising results, considerable work re-
mains to be done, such as designing a learning model,
applying to other forms of planning/scheduling prob-
lems, and studying coherence of negotiation strategies
in various scheduling problems.

References:

[1] F. T. Chan, S. J. Zhang, and P. Li, Modelling of
integrated, distributed and cooperative process
planning system using an agent-based approach,

Proc. Inst. Mech. Eng., Part B—J. Eng. Manuf.,
vol.215(B10), 2001, pp.1437-1451.

[2] D. Dubois, H. Fragier, and Philippe Fortemps,
Fuzzy scheduling: Modeling flexible constraints
vs. coping with incomplete knowledge, Euro-
pean Journal of Operational Research, vol.147,
2003, pp.231-252.

[3] P. Gu, S. Balasubramanian, and D. H. Norrie,
Bidding-based process planning and schedul-
ing in a multi-agent system, Comput. Ind. Eng.,
vol.32(2), 1997, pp.477-496

[4] N. Krothapalli, and A. Deshmukh, Design of
negotiation protocols for multi-agent manufac-
turing systems, Int. J. Prod. Res., vol.37, 1999,
pp.1601-1624.

[5] K. R. Lai, Fuzzy Constraint Processing. Ph.D.
thesis, NCSU, Raleigh, N. C., 1992.

[6] K. R. Lai, and M. W. Lin, Agent negotiation
as fuzzy constraint processing, FUZZ-IEEE’02.
Proceedings of the 2002 IEEE International
Conference on Fuzzy Systems, vol.2(12-17),
2002, pp.1021-1026

[7] K. R. Lai, and M. W. Lin, Modeling Agent Ne-
gotiation via Fuzzy Constraints in e-Business,
Computational Intelligence, vol.20(4), 2004,
pp.624-642

[8] Y. Lee, and S. R. Kumara, and K. Chatterjee,
Multiagent based dynamic resource scheduling
for distributed multiple projects using a market
mechanism, J. Intell. Manuf., vol.14(5), 2003,
pp.471-484

[9] Xudong. Luo, R. Jennings. Nicholas, Nigel
Shadbolt, Ho-fung Leung, and Jimmy Ho-man
Lee, A fuzzy constraint based model for bilat-
eral multi-issue negotiations in semi-competitive
environments, Artificial Intelligence, vol.148,
2003, pp.53-102

[10] P. McDonnell, Smith, S. G. Joshi, and S. R.
T. Kumara, A cascading auction protocol as a
framework for integrating process planning and
heterarchical shop floor control, Int. J. Flexible
Manuf. Syst., vol.11(1), 1999, pp.37-62

[11] R. Macchiaroli, and S. Riemma, A Negotia-
tion Scheme for Autonomous. Agents in Job
Shop Scheduling, Int. J. Comput. Integr. Manuf.,
vol.15(3), 2002, pp.222-232

[12] R. G. Smith, The contract net protocol: High-
level communication and control in a distributed
problem solver, IEEE Trans. Comput., vol.C-
29(12), 1980, pp.1104-1113

[13] L. Wang, and W. Shen, DPP: An agent-based ap-
proach for distributed process planning, J. Intell.
Manuf., vol.14(5), 2003, pp.429-440

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      42


