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1. Introduction
The design of fast dividers is an important issue in
high speed computing because division account for
a significant fraction of the total arithmetic opera-
tion [1]. Most implementations for the division are
based on the high-radix SRT algorithm that uses a
recurrence producing one quotient digit for each
step [2-9]. However, high-performance implemen-
tations tend to use multiplier-based convergence
schemes, referred to as Multiplicative schemes. Ba-
sically, a division (X/Y) is equivalent to a multipli-
cation of X and (1/Y), the reciprocal of the divisor
Y. Thus, a multiplier and lookup table(s) for approx-
imating (1/Y) are employed in the multiplicative
scheme. 

Newton-Raphson and series-expansion algo-
rithms are well-known multiplicative schemes that
may require a large lookup table for high-speed op-
eration. For example, the lookup table for a 16-bit
seed Newton-Raphson or series-expansion divider
is 64KB (bytes) [10]. These 16-bit seed dividers ex-
ecute a division operation with two iterations in sin-
gle precision. If 8-bit seed dividers are used, the
table size is smaller as 128B, but their latency is
longer because they require three iterations. An ac-
curate quotient approximation, which used Taylor-

series expansion, has two lookup tables, requiring
400B for single precision [11].

A high-radix pipelinable-division algorithm
based on the well-know Taylor series expansion was
proposed [12]. The algorithm took the first two
terms of the Taylor series expansion for approxima-
tion. As illustrated in Figure 1(a), the algorithm pro-
vided a simple architecture using a lookup table of
13KB for single precision. It is virtually impossible
to implement the divider in double precision be-
cause a hugh lookup table, nearly 470MB, is re-
quired. Therefore, the size of the lookup table is a
critical factor to implement a pipelinable divider.
Recently, a cost-effective pipelined divider, as
shown in Figure 1(b), with a small lookup table was
proposed to reduce the table size for implementing
in double precision [13]. The algorithm took the first
four terms of Taylor series expansion for approxi-
mation. Results show that table size can be reduced
from 13KB to 208B for single precision, and from
470MB to 56KB for double precision. 

Theoretically speaking, including more terms of
Taylor series expansion for approximation will im-
prove the accuracy of approximation and thus re-
ducing the size of lookup table. However, including
more terms also increases more real-time computa-
tions and thus requiring more hardware and longer
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latency. The question that naturally arises is wheth-
er there exists a point where the hardware saving
due to the table size reduction is offset the in-
creased hardware due to the need of more real-time
computations. 

This study develops a pipelined division algo-
rithm that includes six terms of Taylor series ex-
pansion for approximation. Results will show that
the table size can be further reduced from 208B in
[13] to 36B for single precision, and from 56KB to
1.28K for double precision. The area improvement
is achieved at the cost of longer latency, where the
latency is increased from 7.18ns to 8.90ns for sin-
gle precision, from 9.46ns to 11.46ns for double
precision. This study also shows that the structure
including 6 terms for approximation provides the
minimal hardware with a reasonable latency.

In the next section, the basic division algorithm
in [13] is reviewed. Section 3 presents the proposed
pipelined division algorithms and their hardware
implementation. The designs of the division algo-
rithms with four-terms, six terms, and eight terms

of Taylor series expansion and their structures are
respectively also developed to discuss the design
trade-offs. The total error is the errors accumulated
at each step of a division algorithm, and it deter-
mines the size of lookup table and bit-sizes of the
multipliers. The error analysis of each developed
algorithm will also presented in this section. Sec-
tion 4 presents the experimental results. Finally, a
concluding remark is given in Section 5.

2. Basic Division Algorithms
Let X and Y be two m-bit normalized fixed-point
radicand, where X=1.x1x2..xm and Y=1.y1y2..ym.
To calculate X/Y, Y is first decomposed into two
groups: the higher order bits (Yh) and the lower
order bits (Yl), i.e., Y=Yh+Yl, where Yh=
1.y1y2..yp-1 and Yl=0.00..0ypyp+1..ym. Therefore,
Yh >> Yl and Yl/Yh is approximately zero. In other
words,

1 ≤ X,Y < 2;  1 ≤ Yh < 2-2-p+1; 
          and 0 ≤ Yl < 2-p+1 (1)

A division operation can be represented by Tay-
lor series expansion as follows:

  

=      (2)

If we take the first two terms of (2) to approximate
the division (X/Y), we obtain

           (3)

Therefore, a division operation is executed by mul-
tiplying X, (Yh-Yl), and (1/Yh

2), where (1/Yh
2) is

approximated by a lookup table, and the multiplica-
tion of Y(Yh-Yl) is computed by a Booth multiplier
[12].

The division operation is simplified by first
defining a coarse quotient Q’=XA, where A=(Yh-
Yl)/Yh

2, and the subdivident X’=X-YQ’. Let Q"=
X’(Yh-Yl)(1/Yh

2)=X’A. The quotient is calculated
as 

X/Y ≈ Q’ + Q" = (X + X’)A = (2X - YQ’)A 
       = (AX)(2 - AY) (4)

where both (AY) and (AX) are calculated through
parallel multiplications, as shown in Figure 1(b),
and (2-AY) is a two’s complement of (AY). The
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Figure 1. Block Diagrams for Division Algorithms 
 in Single Precision: (a) [12]; and (b) [13].
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approximating error, i.e., the difference between
(X/Y) and (Q’+Q"), is expressed as

∆ = , and

  (5)

The size of lookup table and the bit-widths of
the multipliers are determined by the possible
errors induced. Four possible errors were consid-
ered [13]: (a) Error caused by the restriction in the
number of entries in the lookup table; (b) Error
caused by the bit-width restriction of the lookup
table; (c) Error caused by the rounding positions;
and (d) Error caused by the bit-inversion. 

The first error is calculated by subtracting the
actual quotient from the ideal quotient, where the
error is expressed as in (5). The number of entries
and output bit-width in the lookup table are 2(p-1)

and q, respectively. Based on the error analysis
[13], both p and q are selected from the following
inequalities,

p > (m+4)/4  and q ≥ -2p+m+5 (6)
For single precision with m=24, by (6), p=8 and

q=13 are resulted. The table size is 2p-1*q=1664
bits or 208 Bytes, and four multipliers with the
dimensions of 24x13, 24x15, 24x15, and 28x28 are
employed with a latency of 11.01ns, where the cir-
cuit was synthesized with Samsung MDL110
0.25µm CMOS standard cell library [14]. Note that
the division algorithm in Figure 1(a) requires a
lookup table with the size of 13KB and two multi-
pliers with the dimensions of 26x26 and 24x24, and
takes a latency of 7.62ns. On the other hand, for
double precision with m=53, by (6), p=15 and q=28
are concluded, where the table size is 448K bits. In
addition, the division algorithm requires three
53x28 multipliers and one 58x58 multiplier are
employed and takes a latency of 24.2 ns [13].

Unfortunately, the latency of 24.2ns for double
precision is impractical. The longer latency is due
to the use of table size of 56KB. Thus, it motivates
this study to develop a simple, yet better latency for
the pipelined division in double precision.

3. Developed Division Algorithms
This section presents the developed pipelined

division algorithms.

3.1. Division Algorithms and Hardware
Structures

Consider the approximating value Q2n that
includes the first 2n terms of the Taylor series
expansion in (2), i.e., 

Q2n = 

= 

=     (7)

The approximating value can be expressed as in the
following theorem,

Theorem 1. 
The approximating value Q2n can be expressed

as 
Q2n = Q2(n-1)(1-AY) + Q2     (8)

where Q2=XA and A=(Yh-Yl)/Yh
2.

The approximating value Q2n can also be
expressed as

Q2n = 

=   (9)

Therefore, the difference between the ideal quo-
tient and actual quotient, or approximating error, is 

  (X/Y) - Q2n = (10)

By (9) & (10), the approximating value and error
for n=2 are respectively

Q4=Q2(1-AY)+Q2=Q2(2-AY)=AX(2-AY). (11)
(X/Y) - Q4 = (X/Y)(Yl/Yh)4   (12)

In other words, the complicated derivations in (4)
and (5) can be simply derived from the Taylor
series expansion as shown in (11) and (12).

Figure 2 shows an alternative pipelined divider
implementing Equation (11). Instead of using a bit-
inversion process to find (2-AY) in Figure 1(b), this
algorithm calculates the final quotient by adding
Q2=XA to the product of XA and (1-AY), where a
simple bit complementer is employed to derive (1-
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AY). In practice, the above multiplication and addi-
tion may be performed by a MAC (Multiplying and
ACcumulating) unit. Both structures in Figures 2
and 1(b) should have the same hardware cost and
latency. 

Note that the accuracy of the approximating
value can be improved by including more terms in
(7) for approximation at the cost of more hardware
and longer latency for calculating the additional
terms. On the other hand, higher accuracy of the
approximating value requires smaller size of
lookup table. In this study, the table size, total hard-
ware cost, and latency of pipelined division algo-
rithms with n=2, 3, and 4, are presented and
evaluated

By theorem 1, the approximating value and
error for n=3 are respectively

Q6=Q4(1-AY)+Q2              (13a)
(X/Y) - Q6 = (X/Y)(Yl/Yh)6   (13b)

and those for n=4 are
Q8=Q6(1-YA)+Q2                      (14a)

    (X/Y) - Q8 = (X/Y)(Yl/Yh)8            (14b)
For n=3, an additional MAC unit is required, while
two MAC units are needed for n=4.

Similar to the error analysis presented in [13],
both p and q are determined by the following ine-
qualities,

2-4p+5 < 2-m+1, or     p > (m+4)/4  (15a)

2-2p-q+6 ≤ 2-m+1, or   q ≥ -2p+m+5    (15b)

2-2p-m1+5 ≤ 2−3∗2-m+1, or m1 ≥ -2p+m+7   (15c)

2-m3+2 ≤ 2−3∗2-m+1, or m2=m3 ≥ m+4        (15d)

Thus, the dimensions of the four multipliers are m
x q, m x m1, m x m1, and m2 x m2, respectively. 

For single precision with m=24, by (15a) and
(15b), p=8 and q=13 are selected. By (15c), m1=15,
and by (15d), m2=m3=28. m4=24 is the bit-width of
the final quotient. Therefore, the dimensions of the
multipliers are 24x13, 24x15, 24x15, and 28x28.
On the other hand, for double precision with m=53,
p=15 and q=28 are resulted. By (15c), m1=30, and
by (15d), m3=m2=57. Thus, the dimensions of the
multipliers are 53x28, 53x30, 53x30, and 57x57. 

3.2. Experimental Results
The pipelined division algorithms in Figures

2have been developed, where the circuits were syn-
thesized with TSMC 0.18mm digital CMOS stan-
dard cell library. The pipelined divider with n=2 for
single precision requires a lookup table with a size
of 27x13 or 208B which takes an area of 63,000
µm2 and a delay of 1.21 ns, as shown in Table 2(a).
The dimensions of four multipliers in this divider
are 24x13, 24x15, 24x15, and 28x28, respectively,
and their corresponding areas are 33,277 µm2,
41,014 µm2, 41,014 µm2, and 86,619 µm2. This
concludes that the total area of the pipelined divider
with n=2 for single precision is 264,924µm2. The
critical path of the divider includes the lookup
table, M1, M3, and M4, and their corresponding
delays are 1.21ns, 1.81ns, 2.28ns, and 2.88ns,
respectively. Thus, the divider has a delay of
7.18ns. For double precision, the pipelined divider
with n=2, the size of lookup table is 214x28, or
56KB and takes 207,02,938 µm2 in area and 1.67ns
in delay. The total area of the divider is 21,422,752
µm2 with a delay of 9.46ns. 

4. Conclusions
Taylor series expansion is a well-known multipli-
cative scheme for high-performance division
implementation. A high-radix pipelinable division
algorithm based on Taylor series expansion [12]
included the first two terms of Taylor series expan-
sion, or n=1, for approximation. It provides a sim-
ple architecture with a lookup table of 13KB for
single precision. The cost-effective pipelined
divider [13] with the first 4 terms of Taylor series
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Figure 2. Developed Pipelined Division Algorithm 
with n=2 in Single Precision: 
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expansion, reduced the table size from 13KB to
208B for single precision, and from 470MB to
56KB for double precision. This paper presents a
simple architecture that implements a pipelined
divider with the first 6 terms of the Taylor series
expansion. Results show that the developed pipe-
lined divider further reduces the size of lookup
table from 208B to 32B for single precision, and
from 56KB to 1.28KB for double precision. This
study also shows that the table size can be further
reduced as more terms in Taylor series expansion
are included for approximation. However, includ-
ing more terms require additional hardware for cal-
culating the extra terms. As a result, the pipelined
divider with the first 6 terms provides an optimal
solution which requires the minimum area with a
reasonable latency. 
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