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Abstract: This work offers a general framework of fuzzy constraint-based agent negotiation with opponent learn-
ing. The proposed approach via fuzzy probability constraint clusters the opponent’s information in negotiation
process as proximate regularities to increase the efficiency on the convergence of behavior patterns, and elimi-
nates the bulk of false hypotheses or beliefs to improves the effectiveness on beliefs learning. By using fuzzy
instance method, our approach can not only reuse the prior opponent knowledge to speed up problem-solving, but
also reason the proximate regularities to acquire desirable outcomes on predicting opponent behavior. Besides,
the proposed interaction method enables the negotiating agent to adapt dynamically based on expected objectives.
Moreover, experimental results suggest that the proposed framework allowed an agent to achieve a higher reward,
fairer deal, or less cost of negotiation.

Key–Words: Intelligence systems, multi-agent systems, agent negotiation, opponent modeling, beliefs learning,
fuzzy constraints.

1 Introduction
Agents need to achieve communication and sociabil-
ity each other in a multi-agent system. In order to
successfully interact, it is necessary to endow agents
with the ability to negotiate with others. Agent nego-
tiation has been recognized as an important activity in
e-commerce and has become one of principal research
subjects. In a multi-agent system, an agent typically
has incomplete information about the preferences or
decision-making processes of other agents. To that
end, many machine learning models [6, 13] have been
proposed for predicting opponent’s beliefs. In the re-
inforcement learning model [1, 16], the agent receives
an indication of the current state of the environment
as an input in each interaction. Then, the agent per-
forms an action to generate an output and to change
the state of the environment toward a more desir-
able resulting state by providing a reward or penalty.
However, the problem of slow convergence reveals
formidable computational obstacles to develop such

a model. On the other hand, the model-based learning
[3, 7] presented an architecture to learn the models of
rival agents. The learning models are used to infer a
best-response strategy and an algorithm is specified to
elucidate an opponent’s strategy from the earlier be-
liefs of the opponent. Nevertheless, all such frame-
works assume that agents can observe the states and
actions of other agents and share common knowledge.
Then, the Bayesian learning algorithm [15, 18] manip-
ulates occurrences of interest using probability distri-
butions. The probabilistic evaluation over the set of
occurrences of interest can be summarized from the a
priori knowledge as the reference of next proposed of-
fer. Even so, it needs a large set of training examples
to converge toward a correct prediction.

The theoretical concepts and practical applica-
tions [2, 4, 11, 17] of fuzzy constraints are ready,
so fuzzy constraint not only can be used to treat im-
precise and vague information inherited from fuzzy
logic, but also can be used to adapt to a continu-
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ally changing environment by adding or eliminating
constraints. Accordingly, fuzzy constraints are re-
garded as very suitable for addressing the imprecision
and inter-dependencies involved in agent negotiation.
Several studies [9, 12] have addressed this issue.

Complying with our previous work [10], this re-
search presents a general framework of agent nego-
tiation with opponent learning via fuzzy constraint-
based approach. The fuzzy constraint-based approach
involves the fuzzy probability constraint where each
fuzzy constraint has a certain probability, and the
fuzzy instance reasoning where each instance is rep-
resented as a primitive fuzzy constraint network. The
proposed approach via fuzzy probability constraint
clusters the opponent’s information in negotiation
process as proximate regularities to increase the ef-
ficiency on the convergence of behavior patterns, and
eliminates the bulk of false hypotheses or beliefs to
improves the effectiveness on beliefs learning. By
using fuzzy instance method, our approach can not
only reuse the prior opponent knowledge to speed up
problem-solving, but also reason the proximate regu-
larities to acquire desirable results on predicting op-
ponent behavior. Besides, the proposed interaction
method enables the agent to adapt dynamically based
on expected objectives. Moreover, experimental re-
sults suggest that the proposed framework allowed an
agent to achieve a higher reward, fairer deal, or less
cost of negotiation.

The rest of this article is organized as follows.
Section 2 introduces the theoretical basis of fuzzy
constraint-based negotiation. Section 3 discusses the
opponent’s beliefs learning from an agent negotia-
tion process. Section 4 presents the effectiveness of
the method by experiments. Finally, Section 5 draws
some conclusions.

2 Fuzzy Constraint-Based Agent Ne-
gotiation

Agent negotiation is closely related to a distributed
fuzzy constraint satisfaction processing in that coming
up to a mutually acceptable agreement between two or
more agents [14] is the same as uncovering a consis-
tent solution satisfying all the constraints in a fuzzy
constraint network specifying the fuzzy relationships
inside each agent and among agents. Thus, many ap-
proaches [?, 12] have formulated agent negotiation via
distributed fuzzy constraints or prioritized fuzzy con-
straints to discover agents’ potential agreements in or-
der to reach a common satisfactory outcome.

2.1 Agent Negotiation as the Problem Solv-
ing of Distributed Fuzzy Constraints

Fuzzy constraint satisfaction problems (FCSPs) [8]
are defined by a collection of objects with the asso-
ciated domains and a set of crisp or fuzzy constraints
that relate the objects to the objective of determin-
ing whether a tuple exists that satisfies all the con-
straints to an extent that is greater than or equal to the
threshold of acceptability. However, real-world envi-
ronments are inherently distributed. Thus, the FCSP is
extended to a distributed FCSP (DFCSP), which can
be represented as a set of fuzzy constraint networks
(FCNs) that are connected by constraints. Following
[9], a distributed fuzzy constraint network (DFCN) is
defined as below.

Definition 1 Distributed fuzzy constraint network :
A distributed fuzzy constraint network (U ,X,C) can
be defined as a set of fuzzy constraint networks{
N1, ...,NL

}
, Nk = (Uk,Xk,Ck) representing an

agent k, where

• Uk is a universe of discourse for agent k;

• Xk is a tuple of nk non-recurring objects
Xk

1k , . . . , Xk
nk ;

• Ck is a set of mk ≥ nk fuzzy constraints, which
is the union of a set of internal fuzzy constraints
Cki existing among objects in Xk and a set of ex-
ternal fuzzy constraints Cke referring to at least
one object in Xk and another not in Xk ;

• Nk is connected to other agents by Cke;

• U is a universe of discourse;

• X =
(
∪L

k=1X
k
)

is a tuple of all non-recurring
objects;

• C =
(
∪L

k=1C
k
)

is a set of all fuzzy constraints.

The intent of a distributed fuzzy constraint net-
work (U ,X,C), written ΠU ,X,C, meaning the set
of solutions of DFCN can be regarded as an agree-
ment among agents that satisfy all of demands. No
agent knows about its opponents’ feasible proposals
and possible agreements a priori. Agents take turns
to propose offers to explore potential agreements,
thereby moving the negotiation toward a consensus.

The overall course of agent negotiation is a con-
secutive process of offer generation and evaluation.
The offer generation of agent not only directly de-
cides the aggregated satisfaction value (ASV) at next
round but also is a representation of agent’s desires
and beliefs. The offer evaluation is to decide whether
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to accept the counteroffer along with the aggregated
satisfaction value of counteroffer by an agent. If the
aggregated satisfaction value of counteroffer is supe-
rior to the one of offer at current or next round for
agent k and the counteroffer is one of feasible propos-
als or a potential agreement in ΠU ,X,C , then agent k
will accept the counteroffer as an agreement. Other-
wise, agents will perform the negotiation until one of
agents withdraws. The following aggregated satisfac-
tion value of the solutions is defined to evaluate offers
or counteroffers.

Definition 2 Aggregated satisfaction value: Given
the value of an offer (or counteroffer) u involving a
number of issues (x1, . . . , xn), the aggregated satis-
faction value of the offer u to agent k, denoted by
Ψk (u) , can be defined as a function of the values of
satisfaction with the issues as follows:

Ψk (u) =
1
n

∑n

j=1
µCk

j
(xj), (1)

where µCk
j
(·) is the satisfaction degree of the con-

straint Ck
j of agent k over issue j.

2.2 Negotiation Strategy
In agent negotiation, a strategy explicitly represents
agent’s expectation and intent. A strategy usually con-
sists of the concession strategy and the tradeoff strat-
egy. In the concession strategy, an agent makes a con-
cession by decreasing its previously aggregated satis-
faction value to generate an offer from a certain so-
lution space. In that space, the satisfaction degrees
of the constraints associated on the solutions equal or
exceed a certain threshold of acceptability. Even if
no solution enables the preference within the proposal
space to be met, an agent can use self-relaxation to
lower gradually the threshold of acceptability and thus
generate new, feasible proposals without giving up on
any of the agent’s demand. In the tradeoff strategy, an
agent generates and develops alternative in a specific
solution space without reducing its aggregated satis-
faction value. In that space, the degrees of satisfaction
in the constraints associated with the solutions equal
or exceed a particular threshold.

3 Opponent’s Behavior Learning
with Fuzzy Constraints

To learn opponent’s beliefs, a fuzzy constraint-based
approach, including strategy identification, instance
matching and adaptive interaction, is presented as fol-
lows.

0 0.5 1
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Figure 1: The membership function of fuzzy proba-
bility constraints.

3.1 Strategy Identification
In our pervious work [9], the definition of meta strat-
egy is based on the different concession scales of ag-
gregated satisfaction values at adjacent negotiation cy-
cles. That is, a strategy can be described with some
critical concession scales. Instead of using exact con-
cession value like traditional Bayesian method, we
adopt a fuzzy concession value to group proximate
paradigms for avoiding the problem of slow conver-
gence. Hence, a strategy can be conveyed by a set
of related fuzzy concession values. To recognize an
opponent’s strategy, an agent can reduce or enlarge
concession value during afterward negotiation round,
and observe the variance of following fuzzy probabil-
ity constraints.

Usual(pk
′
is Ω̃k

′

j ), (2)

which means that P (pk
′

is Ω̃k
′

j ) is usual, in which

P (·) denotes a probability; pk
′

means the set of fuzzy
concession values for opponent agent k

′
; Ω̃k

′

j is the sat-
isfaction degree of identifying the jth kind of strategy
for opponent agent k

′
, “pk

′
is Ω̃k

′

j ” is a fuzzy event
and “usual” indicates a fuzzy probability. The mem-
bership functions of fuzzy probability constraints can
be denoted as Figure 1.

If an agent’s strategy always reveals regularities,
it would need many evidences to support its behavior.
Using the fuzzy probability constraint, the noisy hy-
potheses or beliefs of opponent beyond the behavior
regularities can be eliminated. When the set of fuzzy
concession values matches one of the regularities of
meta strategies within the threshold of fuzzy proba-
bility constraint, an agent may conclude the belief of
opponent’s strategy.

3.2 Fuzzy Instance Matching
An agent may filter out approximate instances with
the same belief of opponent’s strategy from historical
instances. To further match the proximate instances,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007      33



the proposed model employs least-squared error ap-
proach to measure the degree of proximity among his-
torical instances.

Definition 3 Instance match: let µCk
j
(xi

t) (µCk
j
(yi

t))
be the agent k’s (the opponent’s) satisfaction degrees
of offer value xi

t (yi
t against agent k) for issue j at the

tth round during the ith historical instance. µCk
j
(ut)

(µCk
j
(vt)) denotes the agent k’s (the opponent’s) sat-

isfaction degrees of offer value ut (vt against agent k)
for issue j at the tth round over the current negotia-
tion instance. It can be claimed that the ith historical
instance is proximate with the current negotiation in-
stance, if the following constraints are satisfied.

argi=1..n,j=1..m

l∑
t=1

(
µCk

j
(xi

t) − µCk
j
(ut)

)2
≤ λ, and

(3)

argi=1..n,j=1..m

l∑
t=1

(
µCk

j
(yi

t) − µCk
j
(vt)

)2
≤ λ,

(4)
where n is the total number of historical instances;
m denotes the number of negotiating issue; l means
the maximum negotiation round for each historical in-
stance; λ indicates a proximate threshold among be-
havior clusters.

3.3 Adaptive Interaction
After familiarizing an opponent’s behavior, an agent
may also adapt itself for achieving its objectives.

Definition 4 Adaptive interaction: let ut and vt be
the offer and the counteroffer proposed by agent k
and opponent agent k

′
at the tth negotiation round.

The designate situations may apply the following con-
straints.
If an agent’s negotiation goal is to maximize its ag-
gregated satisfaction value for selfish purpose, the
selfish-based interaction must satisfy the constraint

Usual(∩l
i=1Ψ

k(ui) > Ψk
′
(vi)); (5)

if an agent’s negotiation goal is to minimize the differ-
ence of aggregated satisfaction value for both agents,
the fair-based interaction must satisfy the constraint

Usual(∩l
i=1Ψ

k(ui) = Ψk
′
(vi)); (6)

if an agent’s negotiation goal is to obtain an agree-
ment unscrupulously, the economic-based interaction
must satisfy the constraint

Usual(∩l
i=1γ

k
i > γk

′

i ), (7)

Opponent Learning(M̄t)

1 Begin

2 Time bounded ← ρ; vST imeStep ← 0; vFTimeStep ← 0;S ←“”

3 H ← {}; C ← {}; Ā ← 0.0; d∗
t
← 0.0;v∗,u ← (0.0, 0.0, ..., 0.0);

4 S ← Strategy Identification(M̄t);
5 if S 6=“Unknown” then

6 H ← Instance Retrieve(S);
7 end if

8 for i = 1 to Count(H) do

9 if Negotiation Result(C ←) =“Success” then

10 Ā ← Ā + Ā · P (Āi);
11 vST imeStep ← vST imeStep + Final Round(Hi) · P (Final Round(Hi))
12 else

13 vFTimeStep ← vFTimeStep + Final Round(Hi) · P (Final Round(Hi))
14 end if

15 end for

16 if Usual(M̄t is fail) and (vFTimeStep ≤ Time bounded) then

17 Report(“Failure”);
18 Exit; end if;

19 if Usual(M̄t is success) and (Time bounded ≤ vST imeStep) then

20 Report(“Failure”);
21 Exit; end if;

22 if Acceptable(Ā) = True then

23 C ← Instance Match(M̄t,H);
24 d∗

t
← Next Concession Degree(t + 1);

25 v
∗

t+1 ← Next Offer(d∗
t
);

26 ut+1 ← Adaptive Interaction(v∗

t+1);
27 else

28 Report(“Failure”);
29 end if;

30 End

Figure 2: An algorithm of opponent learning.

where γk
i and γk

′

i mean the concession values for
agent k and opponent agent k

′
; ∩l

i=1indicates to im-
plement the “and” operator from the first round to the
final round l.

3.4 Learning Algorithm
To demonstrate the complete concept of the proposed
model, the algorithm of opponent learning is illus-
trated as Figure 2. In Figure 2, the parameter of oppo-
nent learning algorithm, M t, denotes the set of offers
from the 1st to the tth round for current negotiation in-
stance. Lines 2 to 3 present some variables definitions
for opponent learning mechanism. An agent applies
the approach of strategy identification to recognize an
opponent’s possible strategy as S from line 4. In lines
5 to 7, if an opponent’s strategy can be identified, an
agent retrieves the instances with the same belief of
opponent’s strategy into the set of candidate instances
H. In lines 8 to 15, the successful historical instances
can be employed to calculate the possible agree-
ment for the reference of current negotiation instance.
However, the failure instances can also show the lim-
itation of negotiation rounds to reduce the negotiation
resource or cost. Lines 16 to 21 proceed the process
of conflict detection. If the negotiation result matches
the fuzzy probability constraint, Usual(M t is fail),
and the predictive failure round, vFT imeStep, is
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less than or equal to the bounded negotiation round,
Time bounded, it means that the proximate histor-
ical instances would result in the failure outcome
during the bounded round. If the negotiation re-
sult fits the fuzzy probability constraint, Usual(M t

is successful), and the predictive success round,
vST imeStep, is larger than or equal to the bounded
negotiation round, it denotes that the proximate his-
torical instances would result in the successful out-
come until the bounded round is exceeded. In lines
22 to 27, if the predictive agreement A is acceptable,
the learning mechanism Instance match(·) would
be used to match the proximate instances into the
set of match instances C from historical instances
with the current instance M t. Then, the functions
Next concession degree(·) and Next offer(·) are
applied to predict the beliefs of next concession de-
gree and next offer for the opponent agent according
to the proximate instances. Otherwise, mechanism
would report a failure message. Based on the belief of
next offer for the opponent agent, the learning mecha-
nism Adaptive interaction(·) would further adopts
flexible adaptation method to construct the set of fea-
sible offers for agent itself at (t + 1)th round. Finally,
an agent proposes an appropriate offer to the opponent
agent until one of agents withdraws.

4 Experiments
A negotiation may often be approved by maximiz-
ing the aggregated satisfaction value, minimizing the
number of proposals exchanged and ensuring fairness.
Fairness in negotiation is the minimization of the dif-
ference between the aggregated satisfaction values of
agents, which is achieved by maximizing the product
of the aggregated satisfaction values (PASV) of the
negotiating agents. The joint aggregated satisfaction
value (JASV), defined as the sum of the aggregated
satisfaction values of negotiating parties, is used to
measure the quality of the negotiation results. The av-
erage number of proposals exchanged is calculated to
evaluate the cost of the negotiation process. There-
fore, the following experiments are probed for above
different kinds of views.

A multi-issue bargaining scenario, which consists
of one buyer and one seller, is described as follows.

• The negotiation issues are price and time.

• The intervals associated with the issues are
[1000-3000] for price and [0-10] for time. Each
party’s membership function is monotonic de-
creasing and is constructed by generating a pair
of random real numbers from the interval associ-
ated with the issues.

Table 1: The negotiation outcomes of the different ap-
proaches over various viewsBayesian FCAN Fair-basedinteraction Selfish-basedinteraction Economic-basedinteractionPrice 0.2393 0.2808 0.204 0.1908 0.2957Time 0.4307 0.4035 0.3703 0.3607 0.4637Price 0.1342 0.2359 0.3161 0.3317 0.2117Time 0.2597 0.2101 0.2441 0.2532 0.14810.335 0.3421 0.2871 0.2757 0.37970.197 0.223 0.2801 0.2925 0.17990.532 0.5651 0.5673 0.5682 0.55960.066 0.0772 0.0797 0.0795 0.066521 20.59 22.11 22.49 19.4533 0 0 0 4

Method Superificial learning Opponent learningRun 100Seller's ASVBuyer's ASVAvg. Seller's ASVAvg. Buyer's ASVAvg. PASVAvg. RoundFailure CaseAvg. JASV
• The buyer agent’s and the seller agent’s urgency

values are 0.1 and 0.07 respectively.

• The buyer agent employs the opponent learning
mechanism and the seller agent applies a negoti-
ation method with superficial learning heuristics.

• The party that first proposes an offer is randomly
determined.

The following experiments introduce the
Zeuthen’s negotiation strategy in [15] to make its
decision of concession based on how much it has
to lose by running into conflict at that time, and
integrate the tradeoff strategy presented by Faratin
in [5] as the Bayesian approach with superficial
learning heuristics. Our pervious work in [10], fuzzy
constraint-based agent negotiation (FCAN), applying
an undeveloped learning heuristic is also viewed as
a superficial learning. To compare the performance
of negotiation, the Bayesian learning, FCAN, and
the proposed approach run 100 experiments for each
arrangement.

The negotiation outcome in Table 1 shows that
the average ASV for the buyer agent of Bayesian
learning, FCAN, and the selfish-based interaction are
0.197, 0.223, and 0.2925 respectively. These data il-
lustrates that our approach can require a higher reward
than FCAN and Bayesian learning. Also the outcome
indicates that the tuple of average JASV and PASV
of Bayesian learning, FCAN, and fair-based interac-
tion are (0.532, 0.066), (0.5651, 0.0772), and (0.5673,
0.0797). This fact demonstrates that our approach can
obtain a fairer deal than FCAN and Bayesian learn-
ing. Furthermore, the data exhibits that the average
number of proposals exchanged of Bayesian learning,
FCAN, and economic-based interaction are 21, 20.59,
and 19.45 respectively. Such information reveals that
our approach can earn a less cost of negotiation than
FCAN and Bayesian learning. To sum up, the pro-
posed approach did allow an agent to achieve a better
reward, impartial deal, or less round of negotiation.
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As Table 1 shown, the Bayesian learning method
enables an agent to estimate opponents’ beliefs with
the probability distributions in occurrences of inter-
est. Though 500 instances are constructed as a priori
knowledge before running, it still shows the necessity
that needs a large amount of data to converge the cor-
rectness of prediction. Furthermore, the FCAN ap-
proach just applies the variance of satisfaction degrees
for counteroffers to get the opponent’s coarse beliefs,
and utilizes the similarity function to support negoti-
ating agent’s desire. It did not further refine the oppo-
nent’s beliefs to adjust its concession value toward ex-
pected outcome. However, the proposed model with
opponent learning may react dynamically to speed up
toward the correctness of prediction with the fuzzy
probability constraints, to predict an opponent’s next
behavior from the proximate instances resulting from
fuzzy instance based method, and to revise a negotiat-
ing agent’s concession value with adaptive interaction
for achieving the desire objectives. Therefore, it is
understandable for the opponent learning approach to
outperform the superficial learning heuristics.

5 Conclusions
By using fuzzy constraints, this work presented a gen-
eral framework of multilateral agent negotiation with
opponent learning mechanisms. Despite the lack of
adequate information of other agents, the results of the
proposed experiments indicate that our approach can
obtain an effective negotiation in respect of achieving
different kinds of objectives.
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