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Abstract:- Present study is about using of nonparametric models for GDP (Gross Domestic Product) per capita 

prediction in Turkey. It has been considered two alternative situations due to seasonal effects. In the first case, it 

is discussed a semi-parametric model where parametric component is dummy variable for the seasonality. In the 

second case, it is considered the seasonal component to be a smooth function of time, and therefore, the model 

falls within the class of additive models. The results obtained by semi-parametric regression models are compared 

to those obtained by additive nonparametric and parametric linear models. 
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1 Introduction 

It is considered the following basic model 

( ) ( ) ( ) ( ), 1,...,i i i iy t s t z t e t i n= + + =                 (1) 

where the it ’s are  uniformly spaced in [0,1], ( )is t  

denotes  the seasonal component, ( )iz t  represents 

the trend, and ( )ie t  represents the terms of error 

with zero mean and common variance 
2

eσ . The 

model mentioned here can be written as, 

, 1,2,..., .i i i iy s z e i n= + + =               (2) 

It is assumed that the following structure for the 

trend: 

( ) , 1,2,...,i i iz = f t + ε i n=                 (3) 

where f  is a smooth function in [0,1], and iε ’s are 

assumed to be with zero mean and common 

variance
2

εσ , and different from 
ie ’s. 

The basic aim is to estimate the functions 

f and s . The function f  is estimated as a smooth 

function, but the estimation of the function s  is 

different due to seasonality. Therefore, it is 

considered two alternative models for the estimation 

of s . Firstly, it is treated a semi-parametric model 

where parametric component is dummy variable for 

the seasonality. Secondly, it is discussed the 

seasonal component to be a smooth function of time, 

and use a nonparametric method. 

2 Semi-parametric estimation 

It is assume that the seasonality is build as follows: 
1

*

1

( ) , 1,...,
r

i i k ki i

k

s s t D v i nβ
−

=

= = + =∑          (4) 

where r  is the number of annual observations 

( r =12) and iv ’s are assumed to be with zero mean 

and common variance 
2

vσ , and different from 

previous errors. 
*

kiD ’s are dummy variable that 

denotes the seasonal effects and kβ ’s are 

parametric coefficients. Dummy variables are 

denoted by *

ki ki riD D D= −  (where 1kiD =  if i  

correspond to the kth  month of year, and 0kiD =  

otherwise) for cancels the seasonal effects when a 

year is completed [1]. By substitution equations (4) 

and (3) in (2), it is obtained as 
1

*

1

( )
r

i k ki i i

k

y D f t uβ
−

=

= + +∑ ,                (5) 

where iu ’s are the sum of the random errors with 

zero means and constant variance 
2 2 2 2

u e vεσ σ σ σ= + + . Eq. (5) in vector-matrix form 

can be written  

D= + +y f uββββ        (6) 

where D  is the ( 1)n r× −  matrix, so that 

{ }
1,...,

*

1,..., 1

i n
T

ki k r
D D

=

= −
= , ( )1 1,...,

T

r
β β −=ββββ , ( )1,...,

T

n
y y=y , 

( )1( ),..., ( )
T

nf t f t=f ,  and  ( )1 2, , ...,
T

nu u u=u . 

Therefore,  

1 0 . . . 0 1 1 0 . . .

0 1 . . . 0 1 0 0 . . .

.

.

.

0 0 . . . 1 1 0 0 . . .

TD

− 
 − 
 

=  
 
 
 

−  

 

Model (5) is called as a semi-parametric model due 

to consist of a parametric linear component and only 

a nonparametric component. The basic purpose, it is 
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estimation of the parameter vector ββββ  and function 

f  
at sample points 

1,...,
n

t t . For this aim, it is 

considered two estimation methods that called as 

smoothing spline, and regression spline.  

Estimation with smoothing spline: Estimation of 

the parameters of interest in equation (5) can be 

performed using smoothing spline. Mentioned here 

the vector parameter ββββ  and the values of function 

f  at sample points 1,..., nt t  are estimated by 

minimizing the penalized residual sum of squares  

{ } ( )
1

2 2
( )

1 0

( , ) ( ) ( )
n

T m

i i i

i

PSS y d f t f u duλ
=

= − − +∑ ∫fβ ββ ββ ββ β               (7) 

where 
2[0,1]f C∈  and 

id  is the ith  row of the 

matrix D . When the 0=ββββ , resulting estimator has 

the form ( )1 n
ˆ ˆˆ ( ),..., ( )f t f t Sλ=f = y , where Sλ  a 

known positive-definite (symmetric) smoother 

matrix that depends on λ and the knots 1,..., nt t  (see, 

[2]; [3]; [4]).  

For a pre-specified value of λ  the 

corresponding estimators for andf ββββ  based on Eq. 

(5) can be obtained as follows [5], [6]: Given a 

smoother matrix Sλ , depending on a smoothing 

parameter λ ,construct ( )D I S Dλ= −� . Then, by 

using penalized least squares, mentioned here 

estimator are given by  

( )
1

ˆ T T
D D D

−

= y� �ββββ                     (8) 

( )ˆ ˆS Dλ= −f y ββββ                  (9) 

Evaluate some criterion function (such as cross 

validation, generalized cross validation) and iterate 

changing λ  until it is minimized.  

3 Nonparametric estimation 

In the previous section it was used semi-
parametric model for estimation of the parameters 

in (5). However, there are situations in which a 

dummy variable specification does not capture all 

fluctuations because of the seasonal effects. For 

this reason, in this section it is considered a more 

general case for seasonal component as follows: 

( ) , 1,...,
i i i

s g t i nν= + =                (10) 

where g  is an [0,1] and g ∈ 2[ , ]C a b , 'i sν are 

denote the terms of random error with zero mean 

and common variance 
2

νσ . By substitution of the 

equations (3) and (10) in (2), it is obtained as 

( ) ( ) , 1,...,
i i i i

y g t f t u i n= + + = ,            (11) 

where 'iu s  are the terms of random error with 

zero mean and constant variance 2 2 2 2

u e vεσ σ σ σ= + + . 

Model (11) mentioned above has a fully 
nonparametric model because of the parametric 

component is missing. These models are called 

additive nonparametric regression models. In order 
to estimate model (11), it can be generalized the 

criterion (7) and (11) in an obvious way. Estimator 

of the model (11) is based on minimum of the 

penalized residual sum of squares [7] 

{ } ( ) ( )
1 1

2 22 ( ) ( )

1 2

1 0 0

( ) ( ) ( ) ( ) ( )
n

m l

i i i

i

PSS y f t g t f u du g u duλ λ
=

= − − + +∑ ∫ ∫f, g     

(12) 

The first term in (12) denotes the residual sum 

of the squares (RSS) and this term penalizes the 

lack of fit. The second term multiplicand by 1λ  is 

denote the roughness penalty for the f  and the 

third term multiplicand by 2λ  is denote the 

roughness penalty for g . Firstly, eq. (12) can 

be written as 

( ) 1 2, ( ) ( )T T T

f gPSS K Kλ λ= − − − − + +f g y f g y f g f f g g   (13) 

Here fK  is a penalty matrix for f  and gK  is a 

penalty matrix for g . Then, by differentiating 

according to f  and g , it is obtained as follow: 

( )
1

,
2( ) 2 f

PSS
Kλ= − − − +

f g
y f g f

f
             (14) 

( )
2

,
2( ) 2 g

PSS
Kλ= − − − +

f g
y f g g

g
             (15) 

Afterwards, by making (14) and (15) equal to zero, 

the estimators of f  and g  are defined by  

1

1

1
ˆ ( ) ( ) ( )fI K Sλλ −= + − = −f y g y g           (16) 

( ) ( ) ( )
2

1

2
ˆ

g
I K Sλλ

−

= + − = −g y f y f         (17) 

4 An application: Estimation of GDP 

in Turkey  

For the purpose of illustration let us analyze a data 
set, known as the GDP for Turkey. Data related to 

variables used in this study consists of monthly 

time series which starts January, 1984 and ends 
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December 2001, comprising = 216 n  

observations. Mentioned here variables are defined 

as follow:  

gdp   :  Gross Domestic Product ( TL )   

time : Data monthly from January 1984 up to 

December 2001  
1

1

r

k

−

=D  : Dummy variables that denotes the effects 

seasonality  

The main idea of this application presented 

here is to estimate time series and compare the 

nonparametric regression models in section 2 and 
3. Semi-parametric regression results obtained 

using smoothing spline with 2m l= = , which for 

the method presented section three are very similar 

to nonparametric regression ones obtained using 

the same method. The solution can be obtained by 

S-Plus and R software [8]. 

4.1 Empirical results 

Firstly, it is discussed a semi-parametric 

regression model where parametric components 

are dummy variables for the seasonality. 

Secondly, it has been treated nonparametric 

additive models and finally, discussed linear 

parametric regression.  Results obtained with 

these models are given in Table 1, Table 2 and 

Table 3 respectively.    

According to Table 1, it is shown that both 

parametric and nonparametric coefficients are 

significance. So, we can say that GDP is under the 

effect of months. On the other hand, for example, a 

one-unit increase in time corresponds to mean 

increase of 0.020 GDP. As shown Table 1, the 2R  

value is 99.85 %. An 2R  value of 0.9985 means 

that only 98.85 % of variability in GDP is 

predictable using the semi-parametric model.  

As shown the Table 2, the effects of 

interaction seasonality with time on GDP are 

significance in statistical. So, curvilinear effects 

are significance and similarly to semi-parametric 

model, 96.38 % of variability in GDP is 

predictable by nonparametric model. Furthermore, 

a one-unit increase in time corresponds to mean 

increase of 79.121 GDP.  This model is account for   

98.85 % of the variability in response variable.    

 According to Table 3, most of the 

coefficients in parametric linear model are not 
significance in statistical. This model has a smaller 

2R  value and a bigger RSS value than the other 

model. For this reason, estimates obtained by using 

ordinary least square in parametric linear model 

are unfavourable.  

The variable in nonparametric part of semi-

parametric model can be only displayed 

graphically, because it can’t be expressed as 

parametric. While Figure 1 (a) and (b) shows the 

estimates (solid) and the 95% confidence intervals 

(dashed) for nonparametric techniques, Figure 2 

shows the estimates and 95% confidence intervals 

for parametric linear regression.  As shown Figure-

1 (a) and (b), shape of the effects of trend on GDP 

is appears as a curve.  

Estimated values in these figures (a-b) are 

following true regression curves very closely. This 

situation indicates that estimated values are very 

good. However, estimated values in Figure 2 are 

not following the regression curve closely. So, 

estimated values by this model aren’t good results.    

Table1. Results obtained by semi-parametric regression 

Parametric Part                             

Estimate   St. Error        t value      Pr(>|t|)   

(Intercept)  -17.352  1.84e-01 -94.35  6.38e-16 

S(time,15)  0.020 9.23e-05  220.90 4.74e-23 

D1               0.019  1.59e-03    11.711   3.61e-24  

D2             -0.073  1.59e-03  -46.235 5.60e-10 

D3               0.019  1.59e-03    11.711 3.61e-24  

D4             -0.014  1.59e-03   -8.935   3.65e-16  

D5               0.019  1.59e-03   11.711 3.61e-24 

D6            -0.014  1.59e-03   -8.935  3.65e-16  

D7               0.019  1.59e-03    11.711  3.61e-24  

D8               0.019  1.59e-03    11.711   3.61e-24  

D9             -0.014  1.59e-03   -8.935  3.65e-16  

D10             0.019  1.59e-03   11.711   3.61e-24  

D11          -0.014  1.59e-03   -8.935  3.65e-16  

Nonparametric Part  

Df   Npar Df Npar F Pr(F) 

S(time1) 1 14 766.07 2.2e-16  

Response: log(gdp); Deviance=0.009; 
2R = 0.9985;  

MSE=0.238       

 

Table 2. Results obtained by nonparametric regression 

                Df Npar Df  Npar F     Pr(F)     

s(time)         1 3 79.121  2.2e-16 

s(time× D1)   1 3 9.457 8.281e-06 

s(time× D2)    1 3 9.739 5.845e-06 

s(time× D3)     1 3 9.831 5.216e-06 

s(time× D4)    1 3 9.455 8.303e-06 

s(time× D5)    1 3 9.235 1.091e-05 

s(time× D6)    1 3 9.225 1.105e-05 

s(time× D7)    1 3 9.184 1.164e-05 

s(time× D8)    1 3 9.182 1.166e-05 

s(time× D9)    1 3 9.217 1.117e-05 

s(time× D10)   1 3 9.182 1.166e-05 

s(time× D11)   1 3 9.217 1.117e-05 

Response :   log (gdp);    Deviance = 0.224;      
2

R = 0.9638;   

MSE=0.367 
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Table3. Results obtained by parametric linear regression 

               Estimate  Std. Error   t value  Pr(>|t|)  

(Int.) -12.3517 1.6899 -7.3091 0.0000 

time 0.0179 0.0008 21.0822 0.0000 

D1 0.0186 0.0153 1.2194 0.2241 

D2 -0.0734 0.0153 -4.8145 0.0000 

D3 0.0186 0.0153 1.2194 0.2241 

D4 -0.0142 0.0153 -0.9303 0.3533 

D5 0.0186 0.0153 1.2194 0.2241 

D6 -0.0142 0.0153 -0.9303 0.3533 

D7 0.0186 0.0153 1.2194 0.2241 

D8 0.0186 0.0153 1.2194 0.2241 

D9 -0.0142 0.0153 -0.9303 0.3533 

D10 0.0186 0.0153 1.2194 0.2241 

D11 -0.0142 0.0153 -0.9303 0.3533 

Response:  log(gdp);  RSS = 0.540;  2
R = 0.7021; 

MSE=289 
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(a): For semi-parametric regression 
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(b): For nonparametric regression 

Figure 1: Estimates (solid) and the 95 % confidence 

intervals (dashed) 
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Figure 2: Estimates (solid) and the 95 % confidence 

intervals (dashed)  for parametric linear regression 

 

5 Conclusion 

In this paper it has been discussed two 

alternative models based on nonparametric 

regression techniques for estimation in time 

series including trend and seasonality. Results 

obtained with these two models have been 

compared to parametric linear model. Some of 

the performance criteria associated with these 

models have been given the following Table:   

Performance criteria of the 

models  

 

MSE Deviance 2R  

Semi-parametric 

model 

0.238 0.009 0.9985 

Nonparametric 

model 

0.367 0.224 0.9638 

Parametric 

linear model 

0.289 (RSS) 

 0.540  

0.7021 

In brief, from a closer inspection of the 

empirical results, the following observations 

were made:  

• The semi-parametric model has the smallest 

MSE and Deviance. On the other hand, 99.85 

% of variability in GDP is predictable using 

the semi-parametric model.  

• The results of the nonparametric model are 

close to semi-parametric ones. However, MSE 

value of the nonparametric model is higher 

than MSE values of the two other models. 

• RSS and 2R  values of the linear parametric 
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regression are worse from those of the semi-

parametric and nonparametric additive model.    

These results emphasize that estimates based on 

nonparametric regression techniques are very 

better than the traditional methods, like a 

parametric linear regression.. However, estimates 

obtained by semi-parametric regression model are 

better than nonparametric ones.  
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