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Abstract – In this paper a simple closed-loop dc-dc Ćuk converter operating in Discontinuous Capacitor 
Voltage Mode (DCVM) is studied. Analysis of the state equations shows that the system loses stability via 
Hopf bifurcation. The results are verified  through CASPOC simulation. 
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 1 Introduction 
Occurrence of discontinuous modes in PWM dc-dc 
converters can be easily explained taking into 
account some topological aspects. In [1] it is shown 
that in every PWM converter the transistor and the 
diode form: 

• a loop L, with possibly the supply voltage, 
Vg, and a (possibly empty) set of capacitors; 

• a cut-set C, with a non-empty set of 
inductors. 

In Discontinuous Capacitor Voltage Mode 
(DCVM) the small ripple assumption is invalid for 
at least one capacitor in the loop L. A necessary and 
sufficient condition for the occurrence of DCVM is 
the existence of at least one capacitor in the loop L, 
obviously different from the output filter capacitor. 
Therefore it is clear that DCVM cannot be related to 
Buck, Boost or Buck-boost converters, as these 
converters contain only a single capacitor for 
filtering the output voltage. On the other side, Ćuk, 
SEPIC and ZETA converters can enter DCVM 
mode when the small ripple assumption is removed 

from the energy storage capacitor contained in the 
loop L.  

Nonlinear phenomena in dc-dc converters have 
attracted considerable research attention in recent 
years [2], [3]. 

In [4] it is shown that the free-running current-
controlled Ćuk converter, operating in continuous 
conduction mode (CCM), exhibits chaos via Hopf 
bifurcation.  

 In this paper the nonlinear behaviour of the dc-
dc Ćuk converter operating in DCVM is studied. 
The averaged state equations are derived in Section 
2. Based on the state equations, in Section 3 the 
stability of the system is analysed, revealing the 
supercritical Hopf bifurcation. The results are 
verified  through CASPOC simulation. The 
simulation results are presented in Section 4. 

 
 

2 Averaged State Equations 
The system under study consists of a Ćuk converter, 
controlled by a simple proportional feedback 
scheme [6]. The duty cycle is given by: 
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)( 2 refC VvDd −−= κ      (1) 
where D is the steady-state duty cycle, κ is the 
feedback factor and Vref is the voltage reference. A 
simplified schematic of the system is shown in Fig. 
1. 
 

 
 

Fig. 1. The closed loop Ćuk converter. 
 
 

2.1 Derivation of the state equations 
The system can be described by the following state-
space equations: 
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where x is the state vector [iL1 iL2  vC1 vC2]T , 
sn nTt = , and Ts is the switching period. A and B 

for the three subintervals of a switching period are 
given by: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

0
0
0

1

;

1010

0010

1100
0000

1

1

22

1

22

1

L
B

RCC

C

LL
A (3) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

0
0
0

1

;
1010

0000

1000
0000

1

2

22

2
2

L
B

RCC

LA   (4) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

0
0
0

1

;

1010

0001

1000

0100

1

3

22

1

2

1

3

L
B

RCC

C

L

L

A (5) 

In order to derive the averaged state-space 
equations, the following assumptions are made: for 
the inductor currents, iL1 and iL2 the negligible ripple 
assumption is still valid, and therefore, they can be 
admitted equal to their averaged values and constant 
during one switching cycle; however, for the 
capacitor voltage, vC1 the small ripple assumption is 
not valid, while vC2 is assumed to be constant as in 
fact it is the output voltage. The capacitor voltage 
waveform vC1 is linear in the first and third 
subintervals because inductor currents are assumed 
to be constant during Ts, as mentioned above, and 
equal to zero in the second subinterval, as shown in 
Fig. 2, its expression in the first subinterval being 
given by: 
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and in the third subinterval: 
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where the peak value of the capacitor voltage is 
equal to: 
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Fig. 2. The capacitor voltage vC1 waveform.  
 

From Eqn.(8) the relative length of the first 
subinterval can be determined. Therefore: 

2

1
1 )1(

L

L

i
i

dd −=            (9) 

By averaging the Eqn. (2) over Ts: 
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s
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0
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and using Eqns. (3)-(5), the Eqn. (10) becomes: 
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(11) 
By replacing Eqns. (6) and (7) into (11), the 
averaged state space model is found as:  
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where by x is denoted the averaged (over a 
switching period) value of x.  

For simplicity, let us consider that LLL == 21 .  
As shown in [6], when converters are operating 

in discontinuous conduction mode the order of the 
system is reduced by one. Therefore, the Ćuk 
converter operating in DCVM is a third order 
system. 

From Eqns. (1), (9), (12) the following state 
equations that describe the system dynamics result 
in: 
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These equations are valid only if  0≤d≤1. To 
complete the model, the duty cycle saturation must 
be included: 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−=

+−=

−=

2

2

2

22

21

2
122

1

11

2

2

RC
v

C
i

dt
vd

iCL
Ti

L
v

dt
id

CL
Ti

L
V

dt
id

CLC

L

sLCL

sLgL

, for d<0  (14) 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−=

−=

=

2

2

2

22

22

1

RC
v

C
i

dt
vd

L
v

dt
id

L
V

dt
id

CLC

CL

gL

, for d>1        (15) 

The equilibrium point can be found by setting all 
the time derivatives to zero, resulting: 
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where X denotes the steady-state value of the state 
variable x, and: 
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3 The Stability Of The System 
The Jacobian matrix, J(X), of the system, evaluated 
at the equilibrium point is given by: 
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The eigenvalues (characteristic multipliers) of 

the Jacobian, J(X) can be found using the well 
known equation: 

0)](det[ =− XJIλ           (19) 
Using Eqns. (16)-(18), Eqn (19) becomes: 
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It is known that in order to exhibit Hopf 
bifurcation, the following conditions must be 
satisfied: 
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where cκ is the critical value of κ at which a Hopf 
bifurcation occur. 
 
 
4 Simulation Results 
The investigated converter has the following circuit 
parameters: Vg = 10V, L = 10mH, R = 40Ω, 
C1=56.8nF, C2=11μF, fs=20kHz, D=0.6.  

The eigenvalues of the system, numerically 
calculated from Eqn. (20) for several values of the 
feedback factor (considered as bifurcation 
parameter) are shown in Table 1. 

Form Table 1 it can be observed that, at 
κ=0.09449 the real part of the complex eigenvalues 
changes from negative to positive, while the 
imaginary part is not equal to zero, indicating a 
Hopf bifurcation. 

 
Table 1. The characteristic multipliers 

κ The characteristic 
multipliers Observations 

0.07 -2540.7;  
-101.04±1041.7i 

stable orbit 

0.08 -2627.4;  
-57.7±1068.6i 

stable orbit 

0.09 -2708.2;  
-17.3±1092.8i 

stable orbit 

0.094 -2739.1; 
-1.8±1101.8i stable orbit 

0.09449 -2742.8; 
0±1102.96i 

Hopf 
bifurcation 

0.095 -2746.7; 
1.9±1104.1i 

unstable orbit 

0.1 -2784.1; 
20.6±1114.8i 

unstable orbit 

 

The converter with the above mentioned circuit 
parameters was simulated in CASPOC. The scheme 
used for simulation is given in Fig. 3. 
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Fig. 3. The Ćuk converter scheme used in CASPOC 

simulation. 
 
The bifurcation diagram, generated by CASPOC 
simulation is shown in Fig. 4. 
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Fig. 4. The bifurcation diagram. 

 
By simulating the closed-loop system, using 

CASPOC, it can be observed that: 
- For small values of κ the trajectory is spiralling 

toward a fixed period-1 orbit. In Fig. 5 the 
trajectory, the stable period-1 orbit and the 
output voltage waveform are shown. 

- The critical value cκ , at which a Hopf 
bifurcation occurs, is found as 0.0945, which 
confirms the theoretical result. 

- As κ increases, the orbit becomes unstable, 
settling into a limit cycle. The trajectory 
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spiralling away and the limit cycle are shown in 
Fig. 6. 

- For even larger κ, the chaos occurs. The chaotic 
orbit is shown in Fig. 7. 

The theoretical results obtained using the 
averaged space-state model are confirmed by the 
simulation. 

The 3-D figures were obtained in MATLAB, by 
plotting the data exported from CASPOC 
simulation. 
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Fig. 5. Period-1 orbit: (a) the trajectory; (b) the 
stable period-1 orbit (κ=0.08); (c) the output voltage 

waveform. 
 

The simulated trajectories presented in Fig. 5-7 
show a Hopf bifurcation: the stable period-1 orbit 
becomes unstable and settles into a limit cycle, and 

finally becomes chaotic as the bifurcation parameter 
(the feedback factor) is increased.  
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Fig. 6. Unstable period-1 orbit: (a) trajectory 
spiralling away; (b) limit cycle (κ=0.11). 
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Fig. 7. Chaotic orbit (κ=0.3). 

 
 

5 Conclusions 
The power electronics circuits, due to their 
nonlinearity, exhibit a variety of complex behaviour. 
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In this paper the nonlinear behaviour of a simple 
feedback Ćuk dc-dc converter operating in 
discontinuous capacitor voltage mode (DCVM) was 
investigated. Using the averaged modelling, the 
stability of the system is studied. Based on the value 
of the characteristic multipliers of the system, it is 
shown that the Hopf bifurcation occurs at certain  
well estimated values of the feedback factor. The 
results are verified through CASPOC simulations. 
The bifurcation from a stable equilibrium orbit 
through limit cycles to chaos has been observed. 
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