
Novel FPGA-Based Signature Match Circuit for Efficient Network
Intrusion Detection

CHIEN-MIN OU

Department of Electronics Engineering
Ching Yun University

Chungli, 320, TAIWAN

Abstract: - This paper introduces a novel FPGA-based signature match co-processor that can serve as the core of
a hardware-based network intrusion detection system (NIDS). The key feature of the signature match
co-processor is an architecture based on the shift-or algorithm, which employs simple shift registers, or-gates,
and ROMs where patterns are stored. As compared with related work, experimental results show that the
proposed work achieves higher throughput and less hardware resource in the FPGA implementations of NIDS
systems.

Key-Words: - Network Intrusion Detection System, FPGA implementation, Pattern Matching

1 Introduction
Due to increasing number of network worms and
virus, network users are vulnerable to malicious
attacks. A network intrusion detection system (NIDS)
provides an effective security solution to the network
attacks. It monitors network traffic for suspicious
data patterns and activities, and informs system
administrators when malicious traffic is detected so
that proper actions may be taken. Many NIDSs such
as SNORT [9] prevent computer networks from
attacks using pattern-matching rules. The
computational complexity of NIDSs therefore may
be high because of the requirement of the string
matching during their detection processes. the
requirement of the string matching during their
detection processes.
 The SNORT system running on general purpose
processors may only achieve up to 60 Mbps [5]
throughput because of the high computational
complexity. Since these systems do not operate at
line speed, some malicious traffic can be dropped and
thus may not be detected. To accelerate the speed for
intrusion detection, several FPGA-based approaches
have been proposed [2, 3, 4, 5, 6, 7, 8]. Because the
NIDS rules do not change frequently, the cost for
FPGA implementations may not be high as compared
with their software-based counterparts. Moreover,
the hardware implementation can exploit parallelism
for string matching so that the throughput of NIDSs
can be increased.
 One popular way for FPGA implementation is
based on regular expressions [3, 4], which results in
designs with low area cost and moderate throughput
acceleration. In this approach, a regular expression is
generated for every pattern. Each regular expression

is then implemented by a nondeterministic finite
automata (NFA) or deterministic finite automata
(DFA). In the finite automata implementations,
efficient exploitation of parallelism is difficult
because the input stream is scanned one character at a
time. Another alternative for FPGA implementation
is to use the content addressable memory (CAM)
[2,8]. By the employment of multiple comparators in
the CAM, the processing of multiple input characters
per cycle is possible. This may effectively increase
the throughput at the expense of higher area cost.
 The objective of this paper is to present a novel
FPGA implementation approach for NIDSs
achieving both high throughput and low area cost.
The proposed architecture is based on the shift-or
algorithm for exact string matching [1]. The shift-or
algorithm is an effective software approach for
pattern matching because of its simplicity and
flexibility. However, it may not perform well when
the pattern size is larger than the computer word size,
which is the case for many SNORT patterns.
Accordingly, the software implementation of shift-or
algorithm may not be suited for SNORT systems.
 On the other hand, the hardware implementation
of shift-or algorithm imposes no limitation on the
pattern size. In our architecture, each SNORT pattern
is only associated with a ROM and a shift register for
pattern comparison, which are designed in
accordance with the pattern size. Because of its
simplicity, the architecture may operate at a higher
clock rate as compared with other implementations.
In addition, the number of logic elements (LEs) for
the circuit implementation is reduced significantly
when the ROM is realized by the embedded RAM
blocks of the FPGA. The area cost therefore may be
lower than the existing designs [2, 8]. Moreover,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 534

although the proposed architecture in its simplest
form only processes one character at a time, the
architecture can be extended to further enhance the
throughput of the circuit. Multiple characters can be
scanned and processed in one cycle at the expense of
slight increase in area cost.
 The proposed architecture has been prototyped
and simulated by the Altera Stratix FPGA.
Experimental results reveal that the circuit attains the
throughput up to 5.14 Gbits/sec with area cost of 1.09
LE per character. The proposed architecture
therefore is an effective solution to high throughput
and low area cost NIDS hardware design.

2 Preliminaries
This section briefly describes the shift-or algorithm
for exact string matching. Suppose we are searching
for a pattern mpppP ...21= inside a large text (or
source) ntttT ...21= , where mn >> . Every character
of P and T belongs to the same alphabet

},...,{ 1 ∑=∑ ss .

 Let jR be a bit vector containing information
about all matches of the prefixes of P that end at j .
The vector contains 1+m elements [] miiR j ,...,0, = ,
where 0][=iR j if the first i characters of the pattern
P match exactly the last i characters up to j in the
text (i.e., jijiji tttppp 2121 +=+==). The transition
from jR to 1+jR is performed by the recurrence:

⎩
⎨
⎧ ==−

= ++
+ otherwise.,1

,and0]1[if,0
][11

1
jij

j

tpiR
iR (1)

where the initial conditions for the recurrence are
given by [] ,,...,1,10 miiR == and [] mjR j ,...,0,00 == .
The recurrence can be implemented by the simple
shift and OR operations. To see this fact, we first
associate each symbol ∑∈ks a bit vector kS
containing m elements, where the i -th element []iSk
is given by

⎩
⎨
⎧ =

=
.otherwise,1

,if,0
][ik

k

ps
iS (2)

Assume cj st =+1 . Based on eq.(2), the recurrence
shown in eq.(1) can then be rewritten as

ks

1S

a b c
1=i

2=i

3=i

i

j
jR cS jR cS jR cS cS cSjR jR jR

Fig.1. An example of shift-or algorithm with
pattern aabP = and text acaabT = , (a) The bitvector kS
associated with each symbol { }cbaSk ,,=∑∈ for the
pattern P , (b) The bitvector jR for the text T , where one
occurrence of P is found (encircled).

1[] [1] [] 1j j cR i R i OR S i i m+ = − , = ,..., . (3)
We can clearly see now the transition from jR to

1+jR involves to no more than a shift of jR and an
OR operation with cS ,where cj st =+1 . Figure 1
shows an example of the exact string matching based
on the shift-or algorithm, where aabP = and

}.,,{ cba=∑ The bit vector kS associated with each
∑∈ks , which is determined by eq.(2), is given in

Figure 1.(a). In this example,
.acaabT = Therefore, aacasc ,,,= and b for

4,3,2,1=j and 5 , respectively. The cS associated
with cs for each j can be found from the table
shown in Figure 1.(a). Given cS and 1−jR , the jR
can be computed by eq.(3), as show in Figure 1.(b).
Note that, when 5=j , it can be found from Figure
1.(b) that [] .03 =jR Therefore, one occurrence of P
is found when 5=j .

3 The Architecture
The proposed architecture for SNORT pattern
matching is shown in Figure 2. The architecture
contains M modules, where M is the number of
SNORT rules for intrusion detection. The incoming
source is first broadcasted to all the modules. Each
module is responsible for the pattern matching of a
single rule. The encoder in the architecture receives
the intrusion alarms issued by the modules detecting
matched strings, and transfers the alarms to the
administrators for proper actions.

M
Fig.2.The basic structure of the proposed circuit, where
M is the number of rules implemented by the circuit.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 535

1+jt

mcS

1jR m+ []

cS m[]cS 1[] cS 2[]

1m −()

0 0jR =[]
1 1jR + [] 1jR [] 1 2jR + [] 1jR m −[]

m

Fig.3.The basic circuit of each module for exact pattern matching, (a) The block diagram of the circuit, (b) The shift register
circuit during clock cycle j + 1.

m

Fig.4. The augment of a symbol encoder for reducing the
ROM size. In this example, each input character is
assumed to be an ASCII code (8 bits). We also assume the
SNORT rule uses only 7 symbols in the alphabet. The
output of the symbol encoder therefore is 3 bits.

3.1 Basic module circuit
Each module uses the shift-or algorithm for exact
string matching in hardware. As shown in Figure 3,
each module contains a ROM and a shift register.
There are ∑ entries in the ROM. The k -th entry of
the ROM contains the m -bit vector kS where m is
the size of the pattern associated with the module.
The shift register consists of 1−m flip-flops (FFs)
and m OR gates. Based on the bit vectors

,,...,1, ∑=kSk provided by the ROM, the objective
of the shift register is to perform the shift-or
operation shown in eq.(3).
 The module operates by scanning the source
string one character at a time. Therefore, after the
clock cycle j , the circuit completes the string
matching process up to .jt Moreover, the character

1+jt is the input character to the module during the
clock cycle).1(+j Assume .1 cj st =+ The input
character 1+jt is first delivered to the ROM for the
retrieval of cS to the OR gates. Each OR gate i has
two inputs: one is from the i -th output bit of the
ROM (i.e., []iSc), and the other is from the output of
FF)1(−i , which contains []1−iR j during the clock

cycle 1+j . From eq.(3), it follows that the OR gate i
produces []iR j 1+ , which is then used as the input to
the FF i . The []iR j 1+ therefore will become the
output of FF i during the clock 2+j for the
subsequent operations.
 Note that, during the clock cycle 1+j , the m -th
OR gate produces []mR j 1+ , which is identical to 0
when 1121 ++−−= jijiji tttppp In this case, the
module will issue an intrusion alarm to the encoder of
the NIDS system. Therefore,the output of the OR
gate m is the check point of exact string matching
with pattern size m .
 For the FPGA devices with embedded memories,
the ROM may be implemented solely by the memory
bits. Hence, the LEs are required only for the
implementation of the shift register. The circuit
therefore may have low area cost (in terms of the
number of LEs) for the FPGA implementation of
SNORT rules.

2
m

1
m

3
m

Fig.5. The sharing of the same symbol encoder by three
different SNORT rules. Each character is also assumed to
be an ASCII code. All the SNORT rules use the same
alphabet consisting of 7 symbols.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 536

⎡ ⎤

m

2 1jt +

2 2jt + m

⎡ ⎤

2 jt

Fig.6. The structure of a high throughput module circuit processing two characters at a time (q=2).

m
2 1jt +

2 2jt +

⎡ ⎤

2 jt m⎡ ⎤

Fig.7. The structure of a high throughput module circuit processing two characters at a time (q=2) with a shared dual-port
ROM.

 To implement the ROM, we first note that each
ASCII character in a SNORT rule contains 8 bits.
Therefore, 256=∑ and the ROM contains 256
entries for pattern matching. The ROM size can be
reduced by observing the fact that some symbols ks
in the alphabet ∑ may not appear in the pattern .P
Accordingly, they have the same bit vectors

.1=kS These symbols then can share the same entry
in the ROM for storage size reduction. One simple
way to accomplish this is to augment a new symbol

0s (with 10 =S) in the alphabet .∑ All the symbols
ks having 1=kS are then mapped to 0s by a symbol

encoder as shown in Figure 4. These symols then
shared the same entry associated with 0s in the
ROM.
 Since the LEs are required for the implementation
of symbol encoders, the area cost may be high if each
module has its own symbol encoder. We can lower
the area cost by first dividing the SNORT rules into
several groups, where the rules in each group use the
same set of symbols. Therefore, all the rules in the
same group can share the same symbol encoder, as
shown in Figure 5. The overhead for the realization
of symbol encoders then can be reduced.

3.2 High throughput module circuit

The basic module circuit shown in Figure 3 only
process one character per cycle. The throughput of
the NIDS system can be improved further by
processing q characters at a time. This can be
accomplished by grouping q consecutive characters
in the source into a single symbol. Without loss of
generality, we first consider .2=q Let

},...,{ 1 Ω=Ω xx be the alphabet for the new symbols,

where)2,1(yyxi = , and ., 21 ∑∈yy
 Based on Ω a pattern P can be rewritten as

⎡ ⎤ ,... 2/21 muuuP = where).,(212 iii ppu −= Note that

⎡ ⎤2/mu),(1 mm pp −= when m is even.However, when
m is odd, ⎡ ⎤),,(2/ ϕmm pu = where ϕ denotes “don’t
care," and can be any character in .∑ We can then
associate a bit vector kX containing ⎡ ⎤2/m elements
for each symbol ,Ω∈kx where the i -th element of

kX is given by
0 if

[]
1 otherwise

k i
k

x u
X i

, = ,⎧
= ⎨ , .⎩

 (4)

 A ROM containing ΩXX ,...,1 can then be

constructed for shift-or operations. In this case, the
ROM contains 2∑=Ω entries, where each entry
has ⎡ ⎤2/m bits. It is therefore necessary to employ a
larger ROM for a module with higher throughput. A

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 537

⎥⎥
⎤

⎢⎢
⎡

4
m

⎥⎥
⎤

⎢⎢
⎡

4
m

⎥⎥
⎤

⎢⎢
⎡

4
m

⎥⎥
⎤

⎢⎢
⎡

4
m

Fig.8. The structure of a high throughput module circuit processing four characters at a time (q = 4) with a shared dual-port
ROM (r = 2).

Table 1. Comparisons of the proposed architecture with q = 2 for various con_gurations.

symbol encoder similar to that shown in Figure 4 can
be employed to reduce the ROM size. In this case we
augment a new symbol 0x (with 0 1X =) in the
alphabet Ω. All the symbols kx having 1kX = are
then mapped to 0x by the symbol encoder.
 Note that the string matching operations ending at
j over the alphabet Ω is equivalent to the

operations ending at either j2 or 12 +j (but not both)
over the alphabet .∑ It is necessary to perform the
matching process ending at every location of the
source over the alphabet .∑ Therefore, we employ
two shift registers in the module as shown in Figure 6,
where one is for even locations, and the other is for
odd locations. Moreover, since each entry of the
ROM contains only ⎡ ⎤2/m bits, the shift registers
with ⎡ ⎤ 12/ −m FFs and ⎡ ⎤2/m OR gates are

sufficient for the operations. Therefore, the total
number of FFs in the high throughput circuit is
⎡ ⎤ 22/2 −m , which is less than that in the basic circuit

presented in the previous subsection.
 To perform the string matching operations ending
at the even locations of the source over ∑ , we
convert the source T to the sequence ...21eeTe = over
alphabet Ω , where),(212 jjj tte −= . During the clock
cycle 1+j , symbol 1+je is fetched to the ROM. This
is equivalent to the scanning of two characters 12 +jt
and 22 +jt simultaneously for shift-or operations.
 The shift-or operations at the odd locations of the
source can be performed in the similar manner,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 538

Symbol
Encoder

Symbol
Encoder

Symbol
Encoder

Symbol
Encoder

ROM

Shift
Register

Shift
Register

Output

m
q

⎡ ⎤
⎢ ⎥
⎢ ⎥

Broadcast
Circuit

+1,…, +

+1,…, + -1

+2- ,…, +1

.

.

.

.

.

.

.

.

.

Shift
Register

.

.

.

.

.

.

Shift
Register

Shift
Register

.

.

.

+1, +2,…, +

ROM

Branch 1

Branch 2

Branch

Branch

m
q

⎡ ⎤
⎢ ⎥
⎢ ⎥

m
q

⎡ ⎤
⎢ ⎥
⎢ ⎥

m
q

⎡ ⎤
⎢ ⎥
⎢ ⎥

+1,…, + +1-

Shift-or Circuit

Fig.9. The general structure of the proposed circuit, where q is a multiple of r.

Fig.10. The performance of the proposed circuit with q = 1 for various rule sets with sizes ranging from 500 characters to
6000 characters (a)LE per character (b)Operating frequency

except that the source T is extracted as ...,21ooTo =
where).,(122 += jjj tto During the clock cycle 1+j ,
we scan the symbol jo . From Figure 6, we observe
that jo can be obtained from je and 1+je via
delaying and broadcasting operations. Therefore, the
shift-or operations at even and odd locations share
the same input as shown in the figure.
 It can be observed from Figure 6 that two identical
ROMs are required for concurrent reads for each rule.
The storage over head may be reduced further by the
employment of a dual-port ROM allowing the same
memory block to be shared by two concurrent reads,
as shown in Figure 7. An example of the embedded

memory blocks supporting the realization of
dual-port ROM is the M4K blocks of Altera Stratix
FPGA devices, where a true dual-port mode
supporting any combination of two-port operations
(i.e., two reads, two writes, or one read and one write)
is provided. The utilization of these embedded
memory blocks is very helpful for the
implementation of the proposed circuits achieving
both high throughput and low area cost.
 The schemes shown in Figures 6 and 7 can be
extended easily. Figure 8 shows a simple example for
this extension. The circuit in this example contains
two parts: the broadcast circuit and shift-or circuit.
The goal of the broadcast circuit is to deliver the

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 539

incoming characters to q branches with different
offsets. The shift-or circuit is then applied for the
exact string matching of each branch. Note that r
branches can share the same ROM if port-r ROMs
are provided by the FPGA devices. In this example,
we set 4=q and 2=r . A more general scheme for
any given q and .r where q is a multiple of ,r is
shown in Figure 9.

4 Experimental Results and
Comparisons
This section presents experimental results of the
proposed architecture for NIDS. Figure 10 shows the
average number of LEs per character and operating
frequency of the proposed circuit with 1=q for
various rule sets with sizes ranging from 200
characters to 6300 characters. In this experiment, the
symbol encoder is used to reduce the storage size of
the ROM. In addition, different rules will share the
same symbol encoder for reducing the area cost for
the FPGA implementation. We use the Altera
Quartus II as the tool for circuit synthesization. The
target FPGA device is Stratix EP1S40.
 From Figure 10, it can be observed that the
operating frequency of the proposed circuit is stable
over a wide range of rule set sizes. Moreover, the
average number of LEs per characters decreases as
the size of rule set increases. This is because the
areaoverhead for implementing the symbol encoder
reduces as the number of rules sharing the encoder
increases. In particular, when the rule set size is 6300
characters, the average number of characters
becomes only 0.93 LE/char.
 Table 1 compares the throughput, the average
number of LEs per character, total number of
memory bits and operating frequency of the proposed
circuits for various configurations. Only the circuits
processing two characters at a time (i.e., 2=q) are
considered in the table. The rule set size is 1568
characters. In the table, the throughput indicates the
maximum number of bits per second the circuit can
process.
 Because the alphabet size is 162 for 2=q , when
the symbol encoder is not utilized, the ROMs for
each rule has 162 entries, resulting in total amount of
102.76M bits for the rule set size of 1568 characters.
Due to large amount of embedded memory bits
required for pattern storing, it is difficult to
implement the circuit using the existing FPGA

devices. As shown in Table 1, the employment of
symbol encoder significantly reduce the number of
memory bits for ROM implementation (from
102.76M bitsto 40.76K bits). Nevertheless, without
the sharing of symbol encoder by different rules, the
number of LEs consumed by the circuit is 1.99
LEs/char. When the symbol encoder is shared, the
area cost is then reduced to 1.09 LEs/char. Moreover,
the circuit with symbol encoder sharing achieves
clock rate up to 321.03MHz, which is significantly
higher than that of the circuit without symbol encoder
sharing.
 When the ROM is also shared by string matching
operations ending at even and odd locations for each
rule, as shown in Figure 7, the number of memory
bits can be reduced further by half (from 40220 bits
to 20110 bits). Nevertheless, for the Stratix FPGA
devices , the ROM sharing is implemented by true
dual-port ROMs, which are supported only by M4K
embedded memory blocks. On the contrary, the
implementation of single-port ROM can be realized
by embedded memory blocks with faster speed, such
as M512. Therefore, the proposed circuit with ROM
sharing operates at slightly slower clock rate as
compared with its counter- part without ROM
sharing, where the ROMs are implemented by 512M.
 Table 2 compares the FPGA implementations of
the proposed architecture with those of the existing
related works. The proposed circuits considered here
are implemented with symbol encoder sharing.
When ,2=q the circuits with and without ROM
sharing are included. As shown in Table 2, because
the circuit with 2=q processes two characters for
each clock cycle, it has higher throughput than that of
the circuit with 1=q , which processes one character
per cycle only. On the other hand, it can also be
observed from Table 2 that the circuit with 2=q has
slightly higher number of LEs per character. This is
because the circuit has more complex address
encoder for reducing the storage size in ROM. It can
also be observed from the figure that the circuit for

4=q attains higher throughput at the expense of
larger area complexity.
 Note that the exact comparisons of the proposed
circuits with the related work may be difficult
because they are realized by different FPGA devices.
However, it can still be observed from the table that
our circuits have effective throughput-area
performance as compared with existing work. This is

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 540

Table 2. Comparisons of various string matching FPGA designs.

Design

Proposed architecture (q=1)

Proposed architecture (q=2)
without ROM sharing

Proposed architecture (q=2)
with ROM sharing

Proposed architecture (q=4)
with ROM sharing

Gokhale et al. [2]

Hutchings et al. [3]

Moscola et al. [4]

Singaraju et al. [7]

Sourdis-Pnevmatikatos [8]

Device

Altera Stratix EP1S40

Altera Stratix EP1S40

Altera Stratix EP1S40

Altera Stratix EP1S40

Xilinx VirtexE-1000

Xilinx Virtex-1000

Xilinx VirtexE-2000

Xilinx Virtex2VP30-7

Xilinx Spartan33-5000

Throughput
Gb/s

2.13

5.14

4.65

6.92

2.2

0.248

1.18

6.41

4.91

No. characters

6058

1568

1568

1568

640

8003

420

1021

18000

Logic
cells/char

0.96

1.09

1.08

4.55

15.2

2.57

19.4

2.2

3.69

because our design is based on the simple shift-or
algorithm. The simplicity of circuit allows the string
matching operations to be performed at high clock
rate with small hardware area. In particular, when

2=q without ROM sharing, our circuit attains the
throughput of 5.14 Gbits/sec while requiring only the
area cost of 1.09 LEs per character. Moreover, the
circuit with 4=q attains the throughput of 6.92
Gbits/sec. These facts demonstrate the effectiveness
of our design.

5 Conclusion
A novel FPGA implementation of NIDS systems
based on shift-or algorithm is presented in this paper.
The proposed algorithm in the basic form process one
character at a time, and contain only a ROM and a
simple shift register for each pattern matching. The
throughput can be further enhanced by processing
multiple characters in parallel. Both the basic form
and two-character at a time of the proposed algorithm
are implemented in our experiments. Comparisons
with existing work reveal that our design is one of the
cost-effective solutions to the FPGA
implementations of the NIDS systems.

References:
[1] R. Baeza-Tates and G.H. Gonnet, A new

approach to text searching, Communications of
the ACM, Vol. 35, 1992, pp.74-82.

[2] M. Gokhale, D. Dubois, A. Dubois, M. Boorman,
S. Poole and V. Hogsett, Granidt: towards gigabit
rate network intrusion detection technology,
Proceedings of the International Conference on

Field Programmable Logic and Application,
2002, pp. 404-413.

[3] B. L. Hutchings, R. Franklin, and D. Carver,
Assisting network intrusion detection with
reconfigurable hardware, Proceedings of the
IEEE Symposium on Field-Programmable
Custom Computing Machines, 2002, pp.111-120.

[4] J. Moscola, J. W. Lockwood, R. P. Loui and M.
Pachos, Implementation of a Content-Scanning
Module for an Internet Firewall, Proceedings of
the IEEE Symposium on Field- Programmable
Custom Computing Machines, 2003, pp.31-38.

[5] T. Ramirez and C. D. Lo, Rule Set
Decomposition for Hardware Network Intrusion
Detection, in the 2004 International Computer
Symposium (ICS 2004), Taipei, Taiwan, 2004,
Dec. 15-17.

[6] Huang-Chun Roan, Chien-Min Ou, Wen-Jyi
Hwang and Chia-Tien Dan Lo, Efficient Logic
Circuit for Network Intrusion Detection, Lecture
Notes in Computer Science, Vol. 4096, 2006,
pp.776-784.

[7] J. Singaraju, L. Bu and J. A. Chandy, A signature
match processor architecture for network
intrusion detection, Proceedings of the IEEE
Symposium on Field-Programmable Custom
Computing Machines, 2005, pp.235- 242.

[8] I. Sourdis and D. N. Pnevmatikatos, Pre-decoded
CAMs for efficient and high-speed NIDS pattern
matching, Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing
Machines, 2004, pp. 258-267.

[9] SNORT official web site. http://ww w.snort.org

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 541

