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Abstract: For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) 
unit is much more difficult than that of the other measuring sensors under the indefinite noises and nonlinear 
characteristics. Compared with the well known extended Kalman filter (EKF), a recurrent neural network is 
proposed for the solution, which not only improves the location precision, the adaptive ability of resisting 
disturbances, but also avoids calculating the analytic derivation and Jacobian matrices of the nonlinear 
system model. In order to test the performances of the recurrent neural network, these two methods are used 
to estimate states of the vehicle DR navigation system. Simulation results show the recurrent neural network 
is superior to the EKF and is a more ideal filtering method for vehicle DR navigation. 
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1. Introduction 

With the advantages of all weather, globality, and 
high precision, Global Position System (GPS) has been 
widely used in vehicle navigation system to provide 
the vehicle’s position and velocity 
information[1].Unfortunately, the GPS signals are 
often screened or disturbed when the vehicles are in 
the urban canyon, tree-covered areas, or tunnels, which 
makes GPS receiver unable to work normally. At 
present, the popular supplemental system to improve 
GPS accuracy is dead reckoning system (DR), which 
can obtain the position of the vehicle through 
measuring outputs of the low-cost rate gyro and the 
odometer. GPS and DR have complementary 
characteristics. The smoothness and constant 
availability of the DR signals can be used to correct the 
errors of the GPS signals due to the noise effects and 
blockage problems, while the absolute position 
accuracy of GPS can be used to provide feedback 
signals to correct the dead reckoning. However, for the 
indefinite noises and the nonlinear characteristic, 

accurately estimating the states of the DR in the real 
world is much more difficult than that of the GPS. 

During the past 20 years, the EKF has been widely 
applied to this problem. However, the model of the 
system used in state-estimation is assumed to be 
perfectly known, along with the statistics of the 
process and sensor noise entering the system. These 
assumptions severely restrict the application in real 
world. Furthermore, the EKF approach linearizes the 
nonlinear function through a truncated Taylor-series 
expansion at a single point[1,2], which is sub-optimal 
and can seriously affect the accuracy or even lead to 
divergence of the filter. 

Due to this and the need for more accurate and 
theoretically better motivated algorithmic alternatives 
to the EKF, a recurrent neural network is proposed in 
this paper. In principle, the neural network method of 
solution appears similar to the EKF. However there are 
some significant differences: Firstly, the accurate 
analytic derivation and Jacobians of the nonlinear 
system, as in the EKF, are not required. Secondly, the 
noise statistics are assumed unknown and they are not 
explicitly needed in the filter computations. The 
recurrent neural network can not only approximate the 
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functions of the nonlinear DR system, but also realize 
the state estimate in real time by using directly of the 
sensor measurements. In order to test the performance 
of the recurrent neural network to state-estimation for 
vehicle DR navigation system, a semi-physical 
simulation is implemented. 

 

2. Problem Statement 

In this section, the nonlinear model of vehicle DR 
navigation system is established and the general 
state-estimation problem is formulated. 

2.1 The nonlinear model of vehicle DR 
system 

The vehicle DR system is made up of the rate gyro 
and the odometer. The state vector and the 
measurement vector can be selected respectively as: 

[ ]( ) ,T
e e n nX k e v a n v a=     

[ ]( ) TY K sθ=                             (1) 

where,  are the position, velocity and 
acceleration of the easting respectively;  are 
the position, velocity and acceleration of the northing 
respectively. 

, ,e ee v a

nn avn ,,

θ , s are outputs of the rate gyro and the 
odometer respectively. 

Assuming the sampling interval is T, the 
discrete-time nonlinear DR system can be described by 
a dynamic state-space model as follow: 
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ζ  is scale coefficient of odometer; For more 
deduction details, see[1,2]. 

It is obvious that the measurement equation (3) is 
nonlinear, which is difficult for filtering. 

 

2.2 The state-estimation problem of DR 
system 

The objective of state-estimation is to obtain an 
estimate state ( )X k at time K, by utilizing of the 
previous states, X(k-1)…X(k-n), and the sensor values 
Y(k). 

 

3. The EKF method of solution 

The EKF for nonlinear state filtering consists of 
two steps:  

In step 1, the EKF linearizes the nonlinear 
measurement equation 3 through a truncated 
Taylor-series expansion at the first updated estimation 
state, )1/( −kkX , for the purpose of obtaining the 
linear measurement equation for state-estimation as 
formula (4): 

)()()()( kRkXkHkY +=                (4) 

where, 
[ ( )]( ) ˆ( ) ( ) ( / 1)

h X kH k
X k X k X k k

∂
=

∂ = −
 is the 

Jacobians of ][•h  

In step 2, the standard KF is employed for 
state-estimation. For the special algorithms and more 
details, see [1, 2]. 

The EKF can be viewed as providing “first-order” 
approximations to the optimal terms. Furthermore, the 
EKF does not take into account the “uncertainty” in the 
underlying random variable and random noise, which 
often result in inaccurate state estimates, even filtering 
convergence. 

4. The recurrent neural network of 

Proceedings of the 7th WSEAS International Conference on Robotics, Control & Manufacturing Technology, Hangzhou, China, April 15-17, 2007      308



solution 

)1/(ˆ −kkX

ˆ( / 1)Y k k−

The proposed recurrent neural network of solution 
is based on the EKF in this paper, which structure is 
showed in Fig.1. The input of the recurrent neural 
network is the measurement vector, Y(k), and the 
output is the state estimates, ( )X k . Obviously, the 
purpose of the recurrent neural network of solution is 
obtaining the state estimates by utilizing of the sensor 
values.  
 

 

W
mse
∂
∂

 
 
 
 
 
 
 

Fig.1 The recurrent neural network 

There is only one neural network proposed, 
however, there are two phases for state-estimation in 
the neural network method of solution: off-line 
approximating the nonlinear function and on-line 
estimating the states. 

In the first phase, the system is simulated 
numerically by providing the system input signals that 
will typically be encountered during its normal 
operation. Here the state vectors are assumed known, 
obtained from the available model.  In the second 
phase, the system is assumed to be in real operation 
and the states are not assumed available. Input and 
output data are collected and further training is 
performed to fine tune the parameters of the filter. 

Regardless of the system noises and the 
measurement noises, the deterministic 
prediction-update equations can be proposed with the 
form of (5): 

ˆ ( / 1) ( / 1) ( 1)
ˆ ( / 1) [ , ( / 1)]

X k k k k X k

Y k k h k X k k

⎧ − = Φ − −⎪
⎨
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      (5)

 

and the state-estimation formula is as (6): 

ˆ ˆ ˆ( ) ( / 1) ( ){ ( ) [ ( / 1)]}X k X k k K k Y k h X k k= − + − −  (6) 

Furthermore, the state-estimation formula (6) can 
be written as the form of (7): 

ˆ ˆ( ) [ ( / 1), ( )]NNX k K X k k Y k= −        (7) 

where, [ ]NNK • is the nonlinear function equivalent in 
functionality to the EKF gain. 

In contrast to the EKF algorithm, a prediction and 
an update equation for the error covariance matrix is 
not included. In the neural network method of solution, 
the state filter equations (5) and (7) are available. 

Input: Y(k) Phase 1. Off-line approximating the nonlinear 
function 

)(ˆ kXZ-1
Neural 

Net 
In this paper an error back-propagation (BP) 

network[3] utilizing of a Hecht-Nielsen network model 
with three layers, which can approach a random 
nonlinear function[3], is constructed in order to realize 
approximating the nonlinear function, [ ]NNK • . The 
network structure is as Fig.2. 

Predictor 
X(k-1) Model 

Z-1

In Fig.2, The input layer consists of eight neurons: 
six representing the elements of the prediction-update 
state vector, ˆ ( / 1)X k k − , and two representing the 
values of the observation at time k, . The Hidden 
layer consists of twelve neurons and excitation 
function is Sigmod form. The output layer consist of 
six neurons, which representing the state estimates at 
time k, 

( )Y k

( )X k . 
 

)(ˆ kX
 

Output layer
 
 

Hidden layer 
 
 Input layer

 
)(),1/(ˆ kYkkX −

 
Fig.2 BP network structure 

For the training case, a finite set of state values are 
assumed available, constructed either by model 
simulations or off-line measurements. The network 
error function is defined as follows: 

exp exp
0

1 ˆ ˆ[ ( ) ( )] [ ( ) ( )]
2

Np
T

mse
n

E X k X k X k X k
=

= − −∑ (8) 
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Where, ( )X k  is the state-estimation vector; exp( )X k  

is the expectation state vector; and Np is the number of 
training examples. 

Based on a gradient descent algorithm, the training 
in this phase will asymptotically converge to the 
expected value of the target state, given the current and 
previous outputs and previous state estimates. In this 
paper, the details of algorithms are not discussed 
because they follow training principles of the standard 
BP network. 

Phase 2. on-line estimating the states 
For the on-line case the states are unknown, the 

training algorithm becomes more complex. In view of 
that the states are unknown, the network error function 
is defined in terms of the system measurement values 
as follows: 

0

1 ˆ ˆ( ) ( / 1) ( ) ( / 1) ( )
2

n T

s
mse k Y k k Y k Y k k Y k

=
⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦∑   (9) 

The error gradients of the BP network, , 

can be obtained by using the the chain rule as follows: 

)(kmsew∇
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where, α  is the learning rate; W contains all of the 
network weights and biases. 

The gradient WkkY ∂−∂ )1/(ˆ  can be obtained by 
differentiating the predictor equation (6) with respect 
to W as follows: 

[ ]

[ ]

ˆ ˆ( / 1) ( / 1)
ˆ ( / 1)

( 1)                   ( / 1)ˆ ( / 1)

hY k k X k k
W WX k k
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∂ •∂ − ∂ −
= ×

∂ ∂∂ −

∂ • ∂ −
= ×Φ − ×
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The key point is computing the gradient of the state 
with respect to w, . Regarding ( 1) /X k W∂ − ∂ ( 1)X k −  
as the state-estimation at time , it means that 

 is the output of the BP network at time 
1k−

( 1X k −

In sum, the off-line and on-line training phases are 
complementary and essential for training the network. 
The off-line training phase can be viewed as the initial 
training stage used to obtain a good starting point for 
the on-line training phase; the on-line training phase 
can results the more accurate state estimates for the 
off-line approximating and estimating the states in next 
time in closed-loop form.  

In view of that it is impossible to establish the ideal 
dynamic model of vehicle DR systems, and very 
difficult to compute Jacobian matrices of the nonlinear 
system model, the recurrent neural network method is 
more easy to realize, and can obtain more accuracy 
results than the EKF especially under indefinite noises, 
despite the more complicated algorithm frame. 

 

5. Simulation 

In order to test the validity of the recurrent neural 
network in state-estimation of vehicle DR navigation 
system, the semi-physical simulation is implemented 
on computer with Matlab7.0 environment. 

Supposed that the vehicle moves on a straight-line 
road, the constant velocity is 210  m/s and the 
heading is 45. The starting point is (0,0) . In initial time, 
Thirty points between the line of (-6,-6) to (0,0) can be 
selected and their state vectors can also be constructed. 
These vectors are the sampling for off-line training, 
which will continue to be refreshed in real-time 
filtering. Select learning rate is 0.1, learning epochs are 
300, the Fig. 3 shows the change of the MSE. 

 
Fig.3 The MSE of off-line training 

In fact, the MSE is 0.0061106/1e-005 and the 
Gradient is 0.0490169/1e-006 at the 50th epoch, and 
the off-line training can be cancelled.  

) 1k− . 
Obviously, the solution for computing the gradient of 

( 1) /X k∂ − ∂W  has been included in the standard training 
algorithms, for the deduction details, see [3,4]. 

The simulation time is 200s, and the interferers are 
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increased at time 150s. The simulation results are 
shown in Fig.4 and Fig.5. In each figure, the real curve 
is the representation of the result obtained by the 
recurrent neural network, and the broken curve is that 
of the EKF. 

 

 

Fig.4 The eastern position estimation error 

 

 

Fig. 5 The northern position estimation error 

 

Where, Fig. 4 shows the eastern position 
estimation error. Fig. 5 shows the northern position 
estimation error. It is obvious that the recurrent neural 
network can result in more accurate estimates of the 
vehicle DR navigation system than the EKF. 
Furthermore, when the noises are increased, the 
interferers seriously affect the accuracy of the EKF and 
lead to divergence of the filter at last. On the contrary, 
the recurrent neural network shows a good adaptive 
ability to resist disturbing. 

 
 

6. Conclusions 

The recurrent neural network, proposed as a 
solution to state-estimation of the nonlinear vehicle 
DR navigation system here, addresses the defects of 
the well known EKF, with the added benefit of ease of 

implementation in that it need not to calculate the 
accurate analytic derivation and Jacobians of the 
nonlinear DR model. 

In this paper, the simulation results have show the 
superior performance of the recurrent neural network 
method compare to that of the EKF, especially the 
adaptive ability of resisting interferers. Certainly, it’s 
expected that the algorithms of the recurrent neural 
network should be improved and that the method of 
neural network should perform better than the EKF in 
some other nonlinear systems and has a widespread 
use gradually. 
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