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Abstract: - This paper presents a genetic algorithm based approach for solving the thermal generation dispatch 
with emission constraints. New encoding/decoding techniques are developed in the work. The chromosome 
contains only an encoding of the normalized system incremental cost. Therefore, the total number of bits of 
chromosome is entirely independent of the number of units. Moreover, the approach can take emission constraints 
into account to make the solution results satisfying environmental protection requirements. The salient feature 
makes the proposed genetic approach attractive in large and complex systems which other methodologies may fail 
to achieve. Numerical results show the proposed approach has potential in practical applications. 
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1   Introduction 
The generation of electricity from fossil fuel power 

plants emits several pollutants into the atmosphere such 
as oxides of carbon (COx), oxides of nitrogen (NOx) 
and oxides of sulfur (SOx). The Clean Air Act 
Amendments of 1990 mandates that the electricity 
industry reduce its SO2 emission by 8.9 million tons per 
year from the 1980 level. The NOx emission is required 
to be reduced by 2 million tons per year from the 1980 
level [1]. Economic dispatch (ED) plays an important 
role in power system operation [2-4]. However, 
traditionally economic dispatch strategies are designed 
in such a way that the power generation cost is 
minimized neglecting environmental constraints. The 
economic dispatch will become more complex and 
difficult when the emission constraints must be taken 
into account. 

Previous efforts at economic dispatch have applied 
various mathematical programming methods and 
optimization techniques. These include the lambda-
iteration method [2], the base point and participation 
factors method [2], the gradient method [2], the 
recursive method [5], the Newton-Raphson method [6], 
and a unit-based genetic algorithm (GA) method [7] has 
also been reported recently. Among these methods, the 
lambda-iteration method is a well-known method and 
has been widely used by power utilities for economic 
dispatch. However, the characteristics and feasibility of 

the lambda-iteration method have not yet been 
extensively investigated. Since the lambda-iteration 
method requires a continuous problem formulation, it 
cannot be directly applied to the economic dispatch 
problem with discontinuous valve point zones. The base 
point and participation factors method assumes that the 
economic dispatch problem has to be solved repeatedly 
by moving the unit's MW output linearly from a given 
schedule (the base point) to another by “participation” 
in the load change. Since the units' generation cost 
functions are not in linear form, this method yields a 
fast but approximate dispatch. The gradient method is a 
direct search algorithm which starts from a feasible 
solution and searches for the optimum solution along a 
MW output trajectory that always maintains a feasible 
solution in which all the constraint conditions are met. 
The disadvantage of this method is that there is no clear 
stopping rule. Therefore, establishing the optimum 
point is difficult. 

GA is a stochastic searching algorithm. GA combines 
an artificial survival of the fittest principle with genetic 
operators abstracted from nature to form a surprisingly 
robust mechanism that is very effective at finding 
optimal solutions to complex real-world problems [8,9]. 
In the previous work [10], a GA technique has been 
adopted to solve the conventional ED problem and 
applied to the existing Taipower system in Taiwan. This 
paper develops a lambda-based GA approach for 
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solving the ED problem taking emission constraints into 
account. A salient feature of the proposed approach is 
that the solution time grows approximately linearly with 
problem size other than geometrically. This feature is 
attractive in large-scale problems. Numerical results 
show that the proposed approach is robust and efficient. 

 
 

2  Problem Description and Formulation 
 
2.1  Economic dispatch formulation 

The objective of economic dispatch is to minimize 
the total generation cost of a power system over some 
appropriate period (one hour typically) while satisfying 
various constraints. In equation form, this becomes a 
constrained optimization problem: 
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where 
F: total generation cost of the system 
Pi : power generation of unit i 
n : total number of units 
f Pi i( ) : generation cost for  Pi
PD : system load demand 
Ploss: system transmission network losses 
Pi : minimum generation of unit i 
Pi  : maximum generation of unit i 

 
In (1), the generation cost function f  is usually 

expressed as a quadratic polynomial: 
Pi i( )

 
 f P a P b P ci i i i i i i( ) = + +2  (4) 
 
where a , b , and c  are constants. i i i

 
2.2  Ramp rate limits 

In ED research, a number of studies have focused 
upon the economical aspects of the problem under the 
assumption that unit generation output can be adjusted 
instantaneously. Even though this assumption simplifies 
the problem, it does not reflect the actual operating 
processes of the generating unit. 

The operating range of all on-line units is restricted 
by their ramp rate limits [2,11]. Fig. 1 shows three 
possible situations when a unit is on-line from hour t-1 
to hour t. Fig. 1(a) shows that the unit is in a steady 
operating status. Fig. 1(b) shows that the unit is in an 
increasing power generation status. Fig. 1(c) shows that 
the unit is in a decreasing power generation status. 
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Fig. 1. Three possible situations of an on-line unit. 
 
 

The operating range of all on-line units is restricted 
by their ramp rate limits:  

 

1) if generation increases 
  (5) P P URi i

o
i− ≤

 
2) if generation decreases 

 i  (6) P P DRi
o
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where 
Pi

o  : power generation of unit i at previous hour 
URi : ramp rate limit of unit i as generation increases 
DRi : ramp rate limit of unit i as generation decreases 
 

Combining (3), (5), and (6), the ramp rate limits are 
modified as: 

 
 Max P P DR P Min P P URi i

o
i i i i

o
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2.3 Prohibited operating zone 

Fig. 2 shows an input-output performance curve for a 
typical thermal unit where  and  are respectively 
the upper and lower bound of a valve point zone. The 
prohibited operating zones in the curve are due to steam 
valve operating or vibration in a shaft bearing. Several 
studies in the literature [2,7,12,13] discuss the effects of 
the prohibited zone in the ED problem. For example, 
Walters & Sheble model the effects of the prohibited 
zone as a recurring rectified sinusoid function [7]. 
However, in practice, the shape of the input-output 
curve in the neighborhood of the prohibited zone is 
difficult to determine by actual performance testing or 
operating records. In actual operation, the best economy 

Ppz
+ Ppz

−
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is achieved by avoiding operation in these areas. As 
such, a heuristic algorithm is developed in this paper to 
adjust the generation output of a unit in order to avoid 
unit operation in the prohibited zones. 
 
 

Output (MW) 

Input ($/h)

Ppz
− Ppz

+  
 

Fig. 2.  Input-output curve of a thermal unit. 
 
 

2.4  Emission constraints 
To meet the increased requirements for 

environmental protection, alternative ED strategies are 
required for power utility. The environmental 
constrained ED algorithms reported in the literature can 
be divided into two categories: (a) methods for 
minimizing emissions, and (b) methods for minimizing 
fuel cost subject to emission constraints. The algorithm 
proposed in this paper belongs to the latter. Considering 
an emission constrained ED problem, the individual 
pollutant limit and total emission limit are expressed as 
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kE : individual emission limit of k pollutant 
total
kE : total emission limit of k pollutant. 
 
Combining (1), (2), (8), and (9); the emission 

constrained ED problem can be expressed as a 
LaGrange function: 
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where Wk is the weight (LaGrange multiplier) with 
respect to the type k pollutant. 

The two primary thermal unit emissions from a 
dispatching perspective are SOx and NOx. Modeling of 
emission function is generally dependent on the amount 
of fuel burned. That is, the emission function is 
proportional to the thermal unit's fuel consumption. As 
a result, the emission function will be a quadratic 
polynomial form as that of the fuel cost function 
employed in this research: 
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where iα , iβ , and iγ  are constants. 
 
 
3  Solution Methodology 
 
3.1  Overview of GA 

Recently, a global optimization technique known as 
genetic algorithm (GA) has become a candidate for 
many optimization applications due to its flexibility and 
efficiency. GA is a search algorithm based on the 
mechanics of natural genetics and natural selection [8]. 
It combines the adaptive nature of the natural genetics 
or the evolution procedures of organs with functional 
optimizations. By simulating “the survival of the fittest” 
of Darwinian evolution among chromosome structures, 
the optimal chromosome (solution) is searched by 
randomized information exchange. In every generation, 
a new set of artificial chromosomes is created using bits 
and pieces of the fittest of the old ones. While 
randomized, GA is not a simple random walk. It 
efficiently exploits historical information to speculate 
on new search points with expected improved 
performance [8,9]. 

GA is essentially derived from a simple model of 
population genetics. The three prime operators 
associated with the GA are reproduction, crossover, and 
mutation. 

Reproduction is simply an operation whereby an old 
chromosome is copied into a “mating pool” according 
to its fitness value. More highly fitted chromosomes 
(i.e., with better values of the objective function) 
receive a higher number of copies in the next generation. 
Copying chromosomes according to their fitness values 
means that chromosomes with a higher value have a 
higher probability of contributing one or more offspring 
in the next generation. 

Crossover is an extremely important component of 
the GA. It is a structured recombination operation. This 
operation is similar to two scientists exchanging 
information. This study applies a new crossover 
technique known as “uniform crossover” as shown in 
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Fig. 3. Syswerda [14] shows that convergence speed of 
the uniform crossover is faster than the popular one-
point crossover and two-point crossover. 

 
 

Parent A :  1 0 1 0 0 1 0
Parent B :  0 1 1 1 0 0 1

Swapping mask :  0 1 0 1 1 0 0
Offspring A :  1 1 1 1 0 1 0
Offspring B :  0 0 1 0 0 0 1

 
Fig. 3.  The uniform crossover. 

 
 
Although reproduction and crossover effectively 

search and recombine existing chromosomes, they do 
not create any new genetic material in the population. 
Mutation is capable of overcoming this shortcoming. It 
is an occasional (with small probability) random 
alternation of a chromosome position as shown in Fig. 4. 
This provides background variation and occasionally 
introduces beneficial materials into the population. 

 
 

Offspring A :  1 1 1 1 0 1 0
    ↓     

New offspring :  1 1 0 1 0 1 0
 

Fig. 4. The binary mutation. 
 
 
3.2  GA solution algorithm 

The detailed solution methodology includes: the 
encoding and decoding techniques, constrained 
generation output calculation, the fitness function, 
parent selection, and parameter selection. These are 
described in more detail below. 

Implementation of a problem in a GA starts from the 
parameter encoding (i.e., the representation of the 
problem). The encoding must be carefully designed to 
utilize the GA's ability to efficiently transfer 
information between chromosome strings and objective 
function of problem. The proposed approach uses the 
equal system λ  (equal system incremental cost) 
criterion as its basis. The only encoded parameter is the 
normalized system incremental cost, λnm , where 
0 ≤ ≤ 1λnm . The advantage of using system λ  instead of 
units' output as the encoded parameter is that the 
number of bits of chromosome will be entirely 
independent of the number of units. This is particularly 
attractive in large-scale systems. 

The resolution of the solution depends upon how 
many bits are used to represent λnm . In other words, the 

more encoding bits there are, the higher the resolution. 
However, on the other hand, the more encoding bits 
there are, the slower the convergence. In this paper, we 
use 10 bits to represent λnm . 

Evaluation of a chromosome is accomplished by 
decoding the encoded chromosome string and 
computing the chromosome's fitness value using the 
decoded parameter. The decoding of λnm  can be 
expressed as: 
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The relationship between the actual system 

incremental cost, λact , and the normalized system 
incremental cost, λnm , is 

 
 λ λ λ λ λact

sys
nm

sys sys= + −( )  (13) 
 
where λsys  and λsys  are the maximum and minimum 
values of system incremental cost. 

Applying the methods of the LaGrange function and 
Kuhn-Tucker conditions [2] to the constrained 
optimization problem, the ED problem can be 
reformulated as 
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subject to the power balance constraint. For a given λact , 
the generation output of each unit can be determined 
from (14). 

As mentioned in Section 2.3, in actual operation, the 
best economy is achieved by avoiding unit operation in 
the prohibited zone. If the generation output calculated 
from (14) is located in a prohibited zone, it needs 
heuristic adjustment to leave this area. If the 
dispatching hour in a load increasing period (the 
forecasted load of the next hour is greater than this 
hour), the adjusting point is the upper bound, Ppz

+ , to 
follow the load fluctuation. On the contrary, when in a 
load falling period, the adjusting point is the lower 
bound, P . pz

−

Implementation of a problem in a genetic algorithm is 
realized within the fitness function. Since the proposed 
approach uses the equal incremental cost criterion as its 
basis, the constraint equation can be rewritten as 
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Then, the converging rule is when ε  decreases to 

within a specified tolerance. 
In order to emphasize the “best” chromosomes and 

speed up convergence of the iteration procedure, fitness 
is normalized into the range between 0 and 1. The 
fitness function adopted is 
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where k is a scaling constant (k=200 in this study). 

Fig. 5 shows the general flow chart of the proposed 
GA approach for economic dispatch. 

 
 
 

Read in data (unit data, load demand, ...)

Initialize a population of chromosomes

Evaluate each chromosome 

Rank chromosomes according to their Fitness

Select "best" parents for reproduction

Apply crossover and perhaps mutation

Evaluate new chromosomes and insert best into
population displacing weaker chromosomes

Converging ?

Yes

Output

No

 
 

Fig. 5. General flow chart of the proposed approach. 

4   Test Results 
The proposed solution methodologies and its 

computer program have been completed and 
demonstrated through a three-unit test example. Table 1 
shows the unit’s characteristics including unit’s 
capacity, cost coefficients, emission coefficients, and 
emission limits. The load demand of the system is 
300MW and the converging rule is set as when load 
mismatch decreases to within one percent of the load 
demand, that is, 3MW. 

 
Table 1. Unit’s characteristics. 

 
Characteristics Unit 1 Unit 2 Unit 3 

Pi  (MW) 250 150 100 
Pi  (MW) 50 5 15 

ai  0.00525 0.00609 0.00592
bi  8.663 10.04 9.76 
ci  328.13 136.91 59.16 

URi  (MW/h) 55 55 45 
DRi  (MW/h) 95 78 64 

iα  0.00427 0.00619 0.00592

iβ  0.5394 0.2521 0.3366 

iγ  15.25 35.69 42.75 

kE  (kg/Hr) 200 100 150 
 

The emission constraints taken into account in this 
example are the SO2 emission limits. Test results are 
shown in Tables 2 and 3. Table 2 shows the test results 
ignoring emission constraints. This is similar to the 
traditionally cost-minimized ED and used as the main 
benchmark of comparison for the proposed approach. 
Table 3 shows the test results of the proposed emission 
constrained ED. 

From the study, test results show that the SO2 
emission of unit 1 decreases from 235.65 to 200 (kg/Hr) 
in order to satisfy individual emission limit. Moreover, 
total SO2 emission decreases from 432.46 to 418.21 
(kg/Hr). However, on the other hand, the fuel cost 
increases from 3737.26 to 3750.68 ($/Hr). 

 
Table 2.  Test results ignoring emission constraints. 

 
Results Unit 1 Unit 2 Unit 3 

Pi  (MW) 194.27 50 79.63 
Fuel cost ($/Hr) 3737.26 

Ei  (kg/Hr) 235.65 84.01 112.8 
Total SO2 

emission (kg/Hr) 432.46 
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Table 3.  Test results of the proposed approach. 
 

Results Unit 1 Unit 2 Unit 3 
Pi  (MW) 154.22 72.04 97.76 

Fuel cost ($/Hr) 3750.68 
Ei  (kg/Hr) 200 85.98 132.23 
Total SO2 

emission (kg/Hr) 418.21 

 
 

5   Conclusion 
This paper presents a novel approach for solving the 

emission constrained ED problem. In comparison with 
other ED methods, using probabilistic rules rather than 
deterministic rules impart to the proposed approach a 
robust and global optimization algorithm. A salient 
feature of the proposed approach is that the solution 
time in solving ED problem increases approximately 
linearly with the number of units. This feature is 
attractive in large-scale problems. This approach can 
also take emission constrains, network losses, ramp rate 
limits, and prohibited zone avoidance into account to 
make the dispatch more practical. 
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