

TriBA – A Novel Scalable Architecture for High performance Parallel
Computing Applications

HAROON-UR-RASHID, SHI FENG, JI WEIXING, QIAO BAOJUN

Department of Computer Science and Engineering
Beijing Institute of Technology

Beijing 100081,
P.R.CHINA

E-mail: haroon@bit.edu.cn, shifengyoujian@tom.com

Abstract: - This paper presents TriBA - a new idea in multiprocessor architectures. It is believed to be a high
performance parallel computing architecture. The root of this idea is based on the concept that “Complex
problems can be decomposed to three relatively independent sub-problems, which are data Processing, data
Management and data Communication”. Triplet Based Architecture (TriBA) is a real scalable architecture,
featuring fractal nature for computers, is proposed in this paper. TriBA is a new solution for computer
architecture, which is suitable for sophisticated embedded applications with multiple concurrent processing
centers. The characteristics of this architecture are its great modularity, flexibility and scalability to meet the real-
time signal processing demands in future telecommunication and multimedia systems.

Keywords: multiprocessor architecture, Von Neumann architecture, Sierpinski gasket, hierarchical
interconnection, message based communication, complex embedded applications.

1 Introduction

TriBA is a new idea in multiprocessor architectures.
It is believed to be a high performance parallel
computing architecture. The root of this idea is based
on the concept that “Complex problems can be
decomposed to three relatively independent sub-
problems, which are data Processing, data
Management and data Communication”. Further they
can be divided into smaller ones, which are simpler.
This procedure repeats, until we think that each sub-
problem is an atomic problem or some single
individual can handle it. From the view of computer,
these small tasks, which cannot be further subdivided,
are called instructions. Instructions are composed of
operation (op-code) and operand. Semantics of
instructions indicate where and how to load and store
operands. The basic Von Neumann computer runs
these instruction sequences to solve complex
problems. Not only the computer instructions have
this characteristic, but also Von Neumann computer
itself consists of data processing, storage and
Input/Output modules. If we think that small task can
constitute large task and Von Neumann architecture is
the basic (low hierarchical) computer architecture, and
a new large-scale architecture, which is powerful to

solve large-scale problems, can be set up by three Von
Neumann architectures. This constitution way follows
bottom up style and uses three smaller architectures to
compose a more powerful and larger scale computer
systems.

Fig. 1: Illustrates the basic cell in TriBA architecture.

The basic idea of TriBA is based on the similar
concept of hierarchical structure which is self similar
and fractal in nature. Section 2 elaborates this a bit
further. Rest of the paper is organized as follows: In
section 3 and 4 we briefly describe
Intercommunication Network and the Execution
Model for TriBA. Sections 5 compare TriBA with a
typical 2D mesh of processors. Section 6 analyzes the
speedup and efficiency of TriBA, which proves it a
real scalable architecture for high performance

Input/Output
Unit

Processing
Unit

Management
Unit

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 396

parallel applications. Finally section 7 describes what
we intend to do for TriBA in future.

2 Fractal Architecture
Figure 2 we can see that the structure is self-similar.
In fact, this is a fractal object called Sierpinski Gasket.
Fractal geometry theory states, Sierpinski Gasket, can
be produced by Iterator Function System (IFS). The
existence of fractal structure is the result of long-term
evolution of the natural world as a natural
phenomenon. And widespread availability of such
structure narrates that it has unparalleled superiority in
information diffuseness and energy transmission [1].

Fig. 2: Sierpinski gasket and pyramid

Object-oriented methodology is a cognitive

methodology and tries to enable computer thinking
and cognizing in the way of human. The abstract and
stratification principles advocated by object-oriented
methodology are the keys to solving complex
problems, in which way we view the decomposition of
complex problems. In object-oriented methodology,
each object is considered as an independent entity and
large object is the aggregation of small ones [2].
Objects contain attribute data, the operations used to
manipulate data and message is the only way that
different object communicates with each other.
Thereby, we can use object-oriented methodology to
model complex problems, and running object-oriented
programs solves complex problems [3].

Studies show that the speed of solving problem will
be greatly accelerated, if the question structure
matches the system communication structure. The
fractal nature of TriBA architecture exactly tallies
with the question structure mentioned previously. The
interconnection of TriBA manifests great similarity to
the hierarchal structure of object systems, so that the
software and computer system achieve a certain
degree of structural unity. Consequently, this can

facilitate the efficient execution of object-oriented
programs and increase the pace of resolving problems.

“Complexity takes the form of hierarchy and
hierarchical systems evolve faster than
nonhierarchical ones” [H. A. Simon ‘78]. A hierarchy
is a recursive partition of a system into subsystems
and a general theory of complex system must refer to
a theory of hierarchy. Software is such a complex
artificial thing that discovering hierarchy and making
use of hierarchy are principles to analyze and
construct systems. Therefore, the TriBA computer
architecture embodies the concept of hierarchicy and
narrows the gap between problem structure and
system structure. Thus it has the potential to become a
high-performance parallel computing architecture.

3 TriBA Intercommunication Network
TriBA is a logical network. Nodes on TriBA cannot
only be a simple cell but also a main board, a
computer, etc. So that TriBA gives a uniform
interconnection among the units in the core of multi-
core CPU, main boards, and computers.

Fig. 3: Uniform Interconnect for TriBA

In addition TriBA interconnection has some

convincing features like: 1 connection required per
node for the lowest layer complete-connect, while a
conventional 2D grid needs 1.25 connections for
complete-connect. Nodes on TriBA can be coded
directly for N-to-N, multi-cast, group-cast, that means
TriBA makes routing implement easy. ID of node on
TriBA is simply coded by 2 bit for each layer. It can
also tag the groups formed by three lower nodes
Direct networks have become a popular architecture
for constructing massively parallel computers because
they scale well [4]. Many experimental and
commercial parallel computers [5], [6] exploit direct
networks for low latency, high bandwidth
interprocessor communication. A newly introduced
class of networks called the Hierarchical
interconnection networks (HIN’s) which employ

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 397

multiple levels of explicitly defined connections to
link disjoint clusters of nodes.

Triple-based hierarchical interconnection network
(THIN) is not only a new kind of direct networks but
also a kind of HIN’s. Efficient routing algorithm is
very essential to the performance of the
interconnection network and the parallel computing
system [7].

The constructing process of THIN is: based on
level 1 THIN, replacing every node with lower level
THIN to structure a higher level THIN, reiterating this
process, we can get any higher level THIN, illustrated
in figure:4 [7].

N (K)

N (k -1)
1 1

N (k -1)
0 1

N (k -1)
1 0

2 2

1 11 1 1 1
k −

… …

2 2

1 1 0 1 0 1 1
k −

… 0
2 2

1 11 0 1 0 1 0
k −

…

2 2

0 11 1 1 1 1 1
k −

…
2 2

1 0 1 1 1 1
k −

… …

2 2

0 1 0 1 0 1 1
k −

… 0
2 2

0 11 0 1 0 1 0
k −

…
2 2

1 0 0 1 0 1 1
k −

… 0
2 2

1 0 1 0 1 0 1 0
k −

…

N (1)

1 1

0 1 1 0

N (k -1)

2 2

1 1 1 1
k −

… …

2 2

0 1 0 1 1
k −

… 0
2 2

1 0 1 0 1 0
k −

…
R e p la c in g e v e ry n o d e o f N (1) w ith a N (k -1)

K le v e l T H IN

Fig. 4: Construction of Level-K THIN [7]

It is apparent that the routing information for
communication incorporates ID of target node, which
provides us that IDs in fact comprise of a distributed
routing table.

4 Execution Model for TriBA
The logical view of a machine supporting the
message-passing paradigm consists of p processes,
each with its own exclusive address space. There are
two implications of a partitioned addresses space.
First, each data element must belong to one of the

partitions of the space; hence, data must be explicitly
partitioned and placed. This adds complexity to
programming, but encourages locality of access that is
critical for achieving high performance, since
processes can access its local data much faster than
non-local on such architectures. The second
implication is that all interactions (read only or
read/write) require cooperation of two processes – the
process that has the data and the process that wants to
access the data. This requirement for cooperation adds
great deal of complexity [10].

The message-passing programming paradigm
requires that the parallelism is coded explicitly by the
programmer i.e., the programmer is responsible for
analyzing the underlying serial algorithm/application
and identifying ways by which the programmer can
decompose the computations and extract concurrency.
Message passing program can often achieve very high
performance and scale to large number of processes.

Fig. 5: Internal view of a cell in TriBA

The execution model of TriBA’s architecture, as

shown in Figure 5 clearly reflects message channels as
well as data channels separately. Message passing
between processing unit and interface unit, as shown
in figure 6, is via a separate channel MC-PI, whereas
MC-PD and MC-DI is used for message passing
between Proc. Unit and Dat. Unit and between Dat.
Unit and Inter Unit respectively. It is worth noting that
Data Channels exist between Dat. Unit and Proc. Unit
and Inter. Unit only for obvious reasons.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 398

Fig. 6: Message based communication in TriBA

Figure 6 gives a clearer picture of the message-

passing paradigm in TriBA not within one cell but
also between cells

Direct Message Send on Message Channel,

Suitable for short massage high
priority level)

Indirect Message Will be inserted into message
que in DatUnit, suitable for
longer messages of low priority

Express Message Sent on message channel,
suitable for short messages with
high priority level

Ordinary
Message

Will be inserted into message
que in DatUnit, suitable for
longer messages with low
priority level

Table. 1: Types of messages for TriBA

The types of messages used in TriBA’s model are

listed in Table 1. The messages are categorized as
high priority short messages and low priority longer
messages. DatUnit holds a message queue where the
second class of messages i.e., indirect and ordinary
messages are placed. In addition, to this these
messages can be categorized as communication
messages and mail messages. Communication
Messages : are like phones and correspondences with

no additional data, whereas, Mail Message : are those
like parcel post with additional data.

5 Performance Evaluation of TriBA
The distinguishing advantage of TriBA is its low
communication cost as described in [7]. In this paper
two important metrics are analyzed i.e., the speed up
and efficiency as shown in Figure. 7 and 8
respectively, representing TriBA’s comparison to a
typical 2D mesh processor structure. However, it is
worth mentioning here that problem size has been
taken constant in this analysis. A couple of examples
are appended in this paper to elaborate the idea
mentioned above.

Figure 7 give the speedup comparison of TriBA
with a typical 2D mesh structure showing prominence
of superior performance of TriBA with increment in
the number of processors. Similarly, Figure 8 depict
the efficiency relation between two structures
boosting the concept of utilizing TriBA as compared
to typical 2D mesh structure.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

P = Processsing Elements

S
pe

ed
up

n=512

TriBA
Typical 2D mesh

Fig. 7: Speedup of TriBA compared to 2D mesh

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

P = Processsing Elements

E
ffi

ci
en

cy

n=512

TriBA
Typical 2D mesh

Fig. 8: Efficiency of TriBA compared to 2D mesh

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 399

6 Scalability Analysis of TriBA
Scalability has been become an important
consideration in parallel algorithm and machine
designs. It is used in practice as a property that
describes the demand for appropriate changes in
performance with adjustments in system size. When
evaluating a parallel system, we are interested in its
performance gain by parallelizing a given application
over a sequential implementation. Speedup ‘S’ is
defined as the ratio of the time taken to solve a
problem on a single processing element to the time
required to solve the same problem on a parallel
computer with identical processing elements measure.
Speedup can never exceed the number of processing
elements, p.

6.1 Example: Cost of adding’ n’ numbers
As the number of processing elements decreases by a
factor of n/p, the computations at each process
element increases by a factor of n/p. Very often
programs are designed and tested for smaller problems
on fewer processing elements. However, the real
problems are much larger, and the machines contain
larger number of processing elements. Their
performance and correctness of programs is much
more difficult to establish based on scaled-down
systems. In this section we evaluate the scalability of
parallel architecture TriBA, using analytical tools.

Consider the problem of adding n numbers on p
processing elements. Assuming unit time for adding
two numbers, the first phase (local summation) of the
algorithm takes roughly n/p time. The second phase
involves log p steps with a communication and an
addition at each 2 log p [10]. Therefore, we can drive
parallel time, speedup, and efficiency as;

2 log (1)

(2)
2 log

1 (3)2 log1

nParallel Execution time p
p

nSpeedup n p
p

Efficiency p p
n

= +

=
+

=
+

These expressions are used to calculate the speedup

and efficiency for any pair of n and p. Figure 9 shows
the Speedup versus p curves for a few different values

of n and p. Table:2 shows the corresponding
efficiencies. Efficiency plot can also be seen in Figure
10. Figure:9 shows that the speedup tends to saturate
and efficiency drops as a consequence of Amdahl’s
law.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

P = Processsing Elements

S
pe

ed
up

n=64

n=192

n=320

n=512

Fig. 9: Speedup versus the number of processing
elements for adding n numbers.

We investigate the effect of increasing problem

size keeping the processing elements constant. In
cases, where overhead function grows sub linearly
with respect to problem size, we see efficiency
increases if the problem size is increased keeping the
number of processing elements constant. For such
algorithms it is possible to keep the efficiency fixed
by increasing both the size of the problem and the
number of processing elements simultaneously.

N P=1 p=3 p=6 p=9 P=15 p=27 p=81
64 1.00 0.90 0.74 0.61 0.44 0.26 0.08

192 1.00 0.96 0.89 0.82 0.70 0.51 0.21

320 1.00 0.97 0.93 0.89 0.79 0.64 0.31
512 1.00 0.98 0.95 0.92 0.88 0.74 0.42

Table: 2 Efficiency as a function of n and p

This can be verified by results in Table: 2 i.e., the

efficiency of adding 64 numbers using 3 (TriBA-
architecture) processing elements is 90%. If the
number of processing elements is increased to 6 and
the size of the problem is scaled up to add 192
numbers, the efficiency nearly remains 90%.
Increasing p to 15 and 27 and n to 320 and 512
respectively, results in approximately the same

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 400

efficiency figure of 90%. This proves TriBA
architecture has full capability of being scalable
parallel systems. Scalability reflects parallel system’s
ability to utilize increasing processing resources
effectively.

Efficiency Graph

0

0.2

0.4

0.6

0.8

1

1.2

1 3 6 9 15 27 81

Processing Elements

Ef
fic

ie
nc

y n=64
n=192
n=320
n=512

Fig. 10: Efficiency as function of n and p for adding
n numbers on p processing elements

7 Conclusion

TriBA architecture is though a new idea in high
performance computing systems, but is full capable of
being a real scalable architecture which is suitable for
sophisticated embedded applications with multiple
concurrent processing centers. The goal of this
research effort is to move a step forward in support of
TriBA as it is believed to be a new solution for
complex embedded applications as well as real time
applications. However, we still need to investigate
many aspects of TriBA like the hardware
implementation of its characteristic object oriented
methodology etc.

References
[1] Arthur D. Hall, III, “The Fractal Architecture
of the Systems Engineering Method” IEEE
transactions on systems, man, and cybernetics—part
c: applications and reviews, vol. 28, no. 4, November
1998.
 [2] P. N. Green, M. D. Edwards, “An Object
Oriented Design Method for reconfigurable
computing systems” IEEE Proc –Design Automation

and test in Europe Conference and Exhibition 2000.,
pages 692-696, March 2000.
[3] P. N. Green, M. D. Edwards, “Object
Oriented development method for reconfigurable
embedded systems” IEE Proc -Comput. Digit Tech,
Vol. 147 No. 3, May 2000.
 [4] Lionel M. Ni and Philip K. McKinley, “A
Survey of Wormhole Routing Techniques in Direct
Networks”, IEEE Computer, Vol. 26, No. 2, February
1993, pp. 62-76.
[5] Michael D. Noakes, Deborah A. Wallach and
William J. Dally, “The J-Machine Multicomputer: An
Architectural Evaluation”, Proceedings of the 20th
International Symposium on Computer Architecture,
May 1993, pp. 2-13.
[6] Anant Agarwal, Ricardo Bianchini and David
Chaiken et al, “The MIT Alewife Machine:
Architecture and Performance”, Proceedings of the
22nd International Symposium on Computer
Architecture, June 1995, pp. 224- 235.
[7] Qiao Baojun, Shi Feng, and Ji Weixing, “A
New Routing Algorithm in Triple-based Hierarchical
Interconnection Network” Proceedings of the First
International Conference on Innovative Computing,
Information and Control (ICICIC'06), 2006, 725-728.
[8] Shi Feng, Ji Wei-xing, Qiao Bao-jun, Liu Bin,
“A New Non Von Neumann Architecture TriBA”
Transactions of Beijing Institute of Technology, Vol.
26, No.10, Oct. 2006, pp. 847-849.
 [9] Weiwei Lin, Changgeng Guo, Deyu Qi,
Yuehong Chen, and Zhang Zhili, “Implementations of
Grid-Based Distributed Parallel Computing”,
Proceedings of the First International Multi-
Symposiums on Computer and Computational
Sciences (IMSCCS'06), 2006,
[10] Ananth Grama, Anshul Gupta, George
Karypis, Vipin Kumar, “Introduction to Parallel
Computing”, 2nd Ed., HZ Books, 2003.
[11] Julian M. Bass, “Proposals toward an
integrated design environment for Complex Embedded
Systems”, Parallel and Distributed Processing, PDP
'98. Proceedings of the Sixth Euromicro Workshop,
1998.
[12] Morris D., D.G. Evans, P.N. Green, and C.J.
Theaker, “Object oriented computer system
engineering”, Springer Verlag, Berlin,1996.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 401

	6.1 Example: Cost of adding’ n’ numbers
	References

