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Abstract: - Partial discharge (PD) pattern recognition is an important tool in high-voltage insulation diagnosis of 

power systems. A PD pattern classification approach of high-voltage power transformers based on a neural network 
is proposed in this paper. A commercial PD detector is firstly used to measure the 3-D PD patterns of epoxy resin 
power transformers. Then, the gray intensity histogram extracted from the raw 3-D PD patterns are statistically 
analyzed for the neural-network-based (NN-based) classification system. The system can quickly and stably learn 
to categorize input patterns and permit adaptive processes to access significant new information. To demonstrate 
the effectiveness of the proposed method, the classification ability is investigated on 120 sets of field tested PD 
patterns of epoxy resin power transformers. Different types of PD within power transformers are identified with 
rather encouraged results. 
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1   Introduction 
Power transformers play a crucial role in operation of 
transmission and distribution systems. A dielectric 
failure in a power transformer could result in unplanned 
outages of power systems, which affects a large number 
of customers [1]. Therefore, it is of great importance to 
detect incipient failures in power transformers as early 
as possible, so that they can be switched safely and 
improve the reliability of the power systems. Partial 
discharges phenomenon usually originates from 
insulation defects and is an important symptom to 
detect incipient failures in power transformers. 
Classification of different types of PDs is of importance 
for the diagnosis of the quality of HV power 
transformers. PD behavior can be represented in various 
ways. Because of the randomization of PD activity, one 
of the most popular representations is the statistics-
based φ-Q-N distribution, i.e., the PD pattern is 
described using a pulse count N versus pulse height Q 
and phase angle φ diagram. Previous experimental 
results have adequately demonstrated that φ-Q-N 
distributions are strongly dependent upon PD sources, 
therefore the 3-D patterns can be used to characterize 
insulation defects [2]. This provides the basis for 
pattern recognition techniques that can identify the 
different types of defects. 

The automated recognition of PD patterns has been 
widely studied recently. Various pattern recognition 
techniques have been proposed, including expert 
systems [3], fuzzy clustering [4], and neural networks 
(NNs) [5], [6]. The expert system and fuzzy approaches 
require human expertise, and have been successfully 
applied to this field. However, there are some 
difficulties in acquiring knowledge and in maintaining 
the database. NNs can directly acquire experience from 
the training data, and overcome some of the 
shortcomings of the expert system. However, the raw 
values of 3-D patterns were used with the NN for PD 
recognition in previous studies [7], the main drawbacks 
are that the structure of the NN has a great number of 
neurons with connections, and time-consuming in 
training. To improve the performance, the gray intensity 
histogram [8] that extract relevant characteristics from 
the raw 3-D PD patterns are statistically analyzed for 
the proposed NN-based classifier. Four statistical 
features including skewness, kurtosis, coefficient of 
standard deviation, and correlation coefficient [9] are 
calculated based on this gray intensity histogram. The 
fault diagnosis database is built in accordance with the 
statistical features extracted. The proposed NN-based 
classifier can then quickly and stably learn to categorize 
input patterns and permit adaptive processes to access 
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significant new information. To demonstrate the 
effectiveness of the proposed method, 120 sets of field-
test PD patterns from high-voltage epoxy resin power 
transformers are tested. Results of the studied cases 
show that different types of PD within power 
transformers are identified with rather encouraged 
results.   

 
2 Partial Discharge Experiments and 

Pattern Processing  
In this paper, the tested object is an cast-resin high-
voltage power transformers that uses epoxy resin for 
high-voltage insulation. The rated voltage and capacity 
of the tested HV power transformers are 12kV and 
2kVA, respectively. For testing purposes, four 
experimental models of power transformers with 
artificial insulation defects were purposely 
manufactured by an electrical manufacturer. The four 
PD models, including high voltage (HV) coil PD, low 
voltage (LV) coil PD, HV corona discharge, and no 
defect are named Type I, II, III, and IV, respectively. In 
the testing process, all of the measuring data are 
digitally converted in order to store them in the 
computer. Then, the PD pattern classifier can 
automatically recognize the different defect types of the 
testing objects. 

The individual 3-D PD patterns (stored as a 256x256 
matrix) are plotted. The x and y axes correspond to the 
phase and amplitude (or charge), respectively. The 
matrix elements correspond to the pulse count data (or 
the z axis of the 3-D pattern). An example 3-D plot of 
the pattern from each one of the four types is given in 
Fig. 1. In order to simplify the extraction of the 
statistical features, a real gray-scaled image would be 
utilized instead of 3-D patterns. The amplitude values 
are linearly mapped to the varying intensities of the 
white color (uniformly mapped to one of the 16 gray 
colors in this work). This gray image is then converted 
to gray intensity histogram for further statistical 
analysis. An intensity histogram is a graph. The 
histogram of an image normally refers to a histogram of 
the pixel intensity values. This histogram shows the 
number of pixels in an image at each different intensity 
value found in that image. For a 4-bit gray-scale image 
there are 16 different possible intensities, and so the 
histogram will graphically display 16 numbers showing 
the distribution of pixels amongst those gray-scale 
values. Fig. 2 shows the corresponding gray-scaled 
image and gray intensity histogram of HV coil PD 
(Type I) in Fig. 1(a). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 1  Four typical defect types of PD pattern. (a) HV 
coil PD (Type I). (b) LV coil PD (Type II). (c) HV 
corona discharge (Type III). (d) no defect (Type IV) 
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(a) 

 
(b) 

Fig. 2  The corresponding gray-scaled image and gray 
intensity histogram of HV coil PD (Type I) in Fig. 1(a) 

 
3 Statistical Features Analysis of Gray 

Intensity Histogram 
The shape of the histogram provides us with 
information about the nature of the image. The features 
of the histogram that we consider here are statistical 
characteristics, where the histogram is used as a model 
of the probability distribution of the gray levels. These 
statistical features provide us with information about 
the characteristics of the gray level distribution for the 
image. In this work, three statistical features including 
skewness, kurtosis, and coefficient of standard 
deviation are all calculated based on the gray intensity 
histogram. The correlation coefficient is calculated 
based on the gray-scaled image. These statistical 
features are defined as follows [8], [9]. 

A. skewness ( ) SK
It measures the asymmetry about the mean in the gray 
intensity histogram. It is defined as 
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where xi is the i-th gray value and Pi is the probability 
of appearance for i-th gray value, i.e. i-th gray intensity 
value. μ is the mean value and σ is the variance. N is the 
number of possible gray intensity values, which is 16 in 
this work. The positive skewness indicates the 
distribution is skewed to the left, with a longer tail to 
the right of the distribution maximum. Negative 
skewness indicates the distribution is skewed to the 
right, with a longer tail to the left of the distribution 
maximum. The skewness shows how symmetry the 
distribution. 

B. kurtosis ( ) KU
It measures the sharpness about the mean in the gray 
intensity histogram. It is defined as follow 
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The positive kurtosis indicates a relatively peaked 
distribution. Negative kurtosis indicates a relatively flat 
distribution, and normal distributions produce a kurtosis 
statistic of about zero. 

C. coefficient of standard deviation (CV) 
The coefficient of standard deviation is a measurement 
of dispersion of a probability distribution. It is defined 
as the ratio of the standard deviation to the mean 
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D. correlation coefficient ( r ) 
The gray-scaled image is divided into positive and 
negative half cycles in according to phase. The 
correlation coefficient describes the difference in 
distribution shape between these two cycles. It is 
defined as follow  
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g to these definition, the average values of 
the 

where xij is the gray value at ij-th position of the 
positive half cycle and yij is the gray value in the 
corresponding negative half cycle. Mp is the number of 
pixel of each half cycle at x axes and Ma is the number 
of pixel at y axes. The coefficient ranges from -1 to 1. 
The value of r represents the degree of symmetry 
between positive and negative half cycle of a 
distribution. 

Accordin
statistical parameters corresponding to the four 
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types of field-test PD patterns are calculated and shown 
in Fig. 3. Starting with PD patterns on different types of 
specimens, a suitable set of statistical parameters are 
determined and then used as input variables to a neural 
network foe the purpose of classifying the defects 
within the insulation. 

0
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Type I
Type II
Type III
Type IV

 
 SK KU CV r 

Type I 3.9176 19.604 2.9684 0.3337
Type II 5.2253 38.587 3.5955 0.0602
Type III 10.452 183.23 7.2656 0.3576
Type 
IV 

13.154 224.66 10.637 0.2321

Fig Average values of statistical parameters of four 

   Recognition Results and Discussion  
of 

ould unavoidably contain some 
no

. 3  
types of field-test PD patterns 
 
4
The problem in this paper is how to classify the type 
defect that produced those PD data. In this aim, a 
multilayer artificial NN could appear certainly as the 
best solution that is possible to find. A back 
propagation neural network (BPNN) has been chosen 
because it is simple and easy to change the number of 
hidden layers and the number of neurons [10]. The 
BPNN utilized to classify PD pattern of the models is 
shown in Fig. 4. Four layers feed forward structure is 
used for the pattern classification system. A multilayer 
perceptron NN with two hidden layers can design 
arbitrary classification regions, the approximation being 
related to the number of hidden nodes [11]. The 
architecture of the BPNN is the result of many tests 
performed, and varying the number of neurons in the 
hidden layers. The neuron number of its input is 
determined by the number of statistical features, viz., 
skewness, kurtosis, coefficient of standard deviation, 
and correlation coefficient. The neuron number of both 
hidden layers is 6. The neuron number of output layer is 
determined by the number of patterns to be identified, 
which is 4 in this study. To demonstrate the 
classification ability, 120 sets of field test PD patterns 
are used to test the proposed PD classification system. 
The four defect models of 12-kV epoxy resin power 
transformers include the no-defect, HV corona 
discharge, LV coil PD, and HV coil PD, respectively. 
The NN-based PD classification system randomly 
chooses 80 instances from the field test data as the 
training data set, and the rest of the instances of the 

field test data are the testing data set. Table 1 shows the 
classified results of the proposed system with different 
input patterns. The recognition rates of the proposed 
system is quite high with 100%. It is obvious that the 
NN-based PD classification system has strong 
generalized capability. 

The field test data w
ise and uncertainties which originate in 

environmental noise, transducers, or human mistakes. 
To evaluate the fault tolerance ability, total 120 sets of 
noise-contained testing data are generated by adding 
±5% to ±30% of random, uniformly distributed, noise 
to the training data to take into account the noise and 
uncertainties. The test results with different amounts of 
noise added are also shown in Table 1 for the BPNN. 
Usually, the noise-contained data indeed degrade the 
classification abilities in proportion to the amounts of 
noise added. The proposed classification system shows 
good tolerance to added noise, and has high accuracy 
rates of 80% in extreme noise of 30%. This table shows 
that the BPNN rather withstand remarkable tolerance to 
the noise contained in the data. 

 

Type I

Type II

Type III

Type IV

skewness

kurtosis

standard deviation

correlation coefficient

two hidden 
layer

input layer output layer

 

Fig. 4  Topology structure of back propagation NN-

Table 1  Classified performances of the BPNN with 

Proportion of noise Recognition rate (%)

based pattern recognition system 
 

various noise added 

± 0 100.0 
± 5 97.5 
± 10 92.5 
± 15 90.0 
± 20 85.0 
± 25 82.5 
± 30 80.0 
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5   Conclusion 
A method to analyze a PD pattern and identify the type 
of discharge source is an important tool for the 
diagnosis of HV insulation system. A NN-based PD 
pattern classification system for HV power transformers 
is proposed. To improve the performance, the gray 
intensity histogram that extract relevant characteristics 
from the raw 3-D PD patterns are statistically analyzed 
for the proposed NN-based classifier. These statistical 
features are then applied to a neural network that 
performs the classification. The recognition rates of the 
proposed system are quite high with 100%, and 80% in 
extreme noise of 30%. The present experimental results 
indicate that this approach is able to implement an 
efficient classification with a very high recognition rate.  
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