
Automatic Proof of Refinement among Design Patterns using the TLC
Model Checker

TOUFIK TAIBI

College of Information Technology
United Arab Emirates University

P.O. Box 17555 Al Ain
UNITED ARAB EMIRATES

e-mail: toufikt@uaeu.ac.ae

ÁNGEL HERRANZ
Facultad de Informática,

Universidad Politécnica de Madrid,
Campus de Montegancedo s/n Boadilla

Del Monte, 28660 Madrid, SPAIN
e-mail:aherranz@fi.upm.es

Abstract: - Design patterns are reuse artifacts meant to improve the quality of software designs as well as the
productivity of designers. Patterns (and their relationships) are mostly described in an informal fashion which
leads to ambiguity and limits tools support. This has worsened with the growing number of well-established
and candidate patterns. This paper discusses how to formally specify the "solution element" of patterns and
their relationships using TLA+, the formal specification language of Temporal Logic of Actions (TLA). The
paper first classifies and formally defines the most common relationships between patterns. Then, it shows
how to automatically proof the existence of a "refines" relationship between patterns using TLC− the TLA+
Model Checker.

Keywords: - Temporal Logic of Action (TLA), TLA+, temporal relations, actions, refinement, TLC.

1. Introduction
Design patterns represent the culmination of many
years in which experienced designers were solving
problems repeatedly encountered within certain
contexts. Hence, reusing patterns yields better
quality software within reduced time frame. Patterns
are usually described in catalogs. The last decade
has seen the publication of many such catalogs
[3][15][8][4][12]. Most pattern writers use a
combination of textual descriptions, Object-Oriented
(OO) graphical notations [10] and sample code
fragments to describe patterns. Informal
specifications are ambiguous and sometimes
misleading in understanding and properly applying
patterns. Hence, there is a need for a formal means
to accurately describe patterns.
 As the number of patterns (well established and
candidate patterns) is growing, it is of major
importance that relationships between patterns are
described precisely in order to facilitate the correct
usage of patterns. Unfortunately, pattern catalogs do
not describe these relationships in a consistent
manner but rather each uses its own classification
terminology. This paper discusses how to formally
specify patterns and their relationships using TLA+
[7], the formal specification language of Temporal
Logic of Actions (TLA) [6]. This works builds-up
from the work done in [11] on Balanced Pattern
Specification Language (BPSL).
 This paper first classifies and formally defines
the most common relationships between patterns.
Then, it shows how to automatically proof the

existence of a "refines" relationship between
patterns using TLC [7]− the TLA+ Model Checker.
 This work as many others in this field focuses on
formally specifying the solution element of a pattern
and not on its other elements such as the problem
solved, the context, the important forces [1] acting
within the problem, consequences, etc. The reason
being that the verbal description of the solution
element is the most coherent and the most tangible
to formalize.
 The rest of the paper is organized as follows.
Section 2 provides a detailed description of how
patterns are formally specified using TLA+. Section
3 classifies the relationships between patterns and
formally describes them. Section 4 provides a case
study, while section 5 concludes the paper.

2. Formal Specification of Design
Patterns Using TLA+
TLA is a logic for specifying and reasoning about
concurrent and reactive systems. A typical TLA
formula has the form: Init∧ [Next]u∧Liveness. Init
is the initial-state predicate—a formula describing
all legal initial states. [Next]u is the next-state
relation, which specifies all possible steps (pairs of
successive states) in a behavior of the system. The
subscript u is a tuple of flexible variables and the
notation [Next]u allows stuttering steps in which
variables in u do not change. Next is a disjunction of
actions that describe the different system operations.
An action is a mathematical formula in which

1

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 542

mailto:toufikt@uaeu.ac.ae
mailto:aherranz@fi.upm.es

unprimed variables refer to the first state of a step
and primed variables refer to its second state.
Actions can contain parameters symbols which do
not represent known values like 1 or “abc”.
However, unlike flexible variables, the value of a
parameter does not change. It must be the same in
the old and new state. The parameter denotes some
fixed but unknown value. It is thus called a rigid
variable. Liveness is a temporal formula that
specifies the liveness (progress) properties of the
system as the conjunction of fairness conditions
(usually Weak Fairness denoted WF in the case of
pattern specification) on actions.
 The structural aspect of patterns is represented
by sub-classes participating in the pattern and the
association between them. Classes are represented as
sets of instances (objects), each of which is
represented by an identity taken from an infinite set
of object identities. As such we use the terms object
and object identity interchangeably.
 The behavioral aspect of patterns is described
as set of behaviors. New states are produced through
the execution of actions. Each state is defined by the
values of temporal relations. Temporal relations are
mathematical relations defined between objects of
two classes. A temporal relation is thus a subset of
the Cartesian product of the two sets (classes).
Temporal relations are defined as TLA flexible
variables. They have been called "temporal" because
their value changes over time while actions are being
executed.
 Associations between sub-classes participating in
the pattern generate the "main" temporal relations
while the other temporal relations are derived from
the "main" ones. For example in the specification of
MEDIATOR_1, the temporal relation Connected is
generated from the association between the classes
concrete_mediator and concrete_colleague, while
the temporal relations Sent and Called are "derived"
from Connected.
 Temporal relations are means of providing an
abstract way of specification such that low-level
programming details are avoided. In later low-level
versions of the specification, temporal relations can
be defined as implementation-level TLA variables.
 The structure of a TLA+ formula for specifying
patterns is shown in Table 1. The theorems reflect
that the execution of the actions preserve invariants
(which at the minimum contain type definitions of
flexible variables) and satisfy pattern properties.

Table 1, Structure of a TLA+ Formula

for Specifying Patterns
Invariants ≜ I1∧...∧Ik {Pattern invariants}
Properties≜ P1∧...∧Pl {Pattern Properties}

Init ≜ P {P is the initial predicate}
Next ≜ A1∨...∨Am {A1...Am are m actions each of
 which could have rigid
variables}
u=〈 u1,...,un〉 {tuple of n flexible variables}
Spec ≜ Init ∧ [Next]u ∧ WFu(A) {A=Ai1∨...∨Ai2,1<=i1<=i2<=m }
Theorem Spec⇒ Invariants {Ensuring pattern invariants are
 always preserved}
Theorem Spec⇒Properties {Ensuring pattern properties are
 satisfied}

3. Classification and Formal
Specification of Patterns Relationships
There are not many articles investigating the
relationships between patterns. Nonetheless, the
most prominent studies were done by Nobel [9] and
Zimmer [16]. Our work builds on Nobel's
classification of primary relationships. However, we
have provided our own version of the definitions of
these relationships in addition to providing the
mathematical definition for them. Relationships
between patterns can be classified in three
categories: "uses", "refines", "differs from" and
"equivalent to". The next sections describe each of
these relationships.

3.1. "Uses"
The "uses" relationship is the most common form of
pattern relationships. Informally it describes that a
"bigger" pattern is made of "smaller" patterns. For
example, the MODEL-VIEW-CONTROLLER pattern
[2] can be seen as a composite of the OBSERVER,
STRATEGY, and COMPOSITE patterns [5]. Formally,
the "uses" relationship can be defined as follows. If
P is a pattern made-of patterns P1,..,Pn each
specified using formulas Ψ1,…, Ψn respectively and
if Q is a pattern specified using formula Φ, P "uses"
Q if and only if (iff): ∃ i : Ψi ⇔ Φ.

3.2. "Refines"
A pattern "refines" another pattern, if one pattern is
a specialization of a more general, simpler, or more
abstract pattern. The "uses" relationship is similar to
composition, while the "refines" relationship is
similar to inheritance. For example, TYPED MESSAGE
[14] is a refinement of MULTICAST [13]. Formally,
the "refines" relationship can be defined as follows.
If P is a pattern specified using formula Ψ and if Q
is a pattern specified using formula Φ, Q "refines" P
iff: Φ ⇒ Ψ. Note that the above is done with proper
substitutions of flexible variables.

3.3. "Differs From" and "Is Equivalent to"
A pattern "differs from" another pattern if they
provide mutually exclusive solutions to their

2

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 543

problems (their solutions have nothing in common).
Formally, the "differs from" relationship can be
defined as follows. If P is a pattern formalized using
formula Ψ and if Q is pattern formalized using
formula Φ, P "differs from" Q iff: ¬(Ψ⇒ Φ) ∧ ¬
(Φ⇒Ψ). The antonym of the above relationship is
"equivalent to". If P is a pattern formalized using
formula Ψ and if Q is a pattern formalized using
formula Φ, P "is equivalent to" Q iff: (Ψ Φ).

4. Case Study
This section describes two versions of the
MEDIATOR pattern [5] which we call MEDIATOR_1
and MEDIATOR_2. We will prove using TLC that
the two patterns have equivalent specifications.

4.1 MEDIATOR_1 Pattern
Figure 1 depicts the structure of the most abstract
form of MEDIATOR_1 pattern. Connected, Sent and
Called are temporal relations defined between
concrete_mediator and concrete_colleague. "*"
represent the cardinality of the relations which is
many-to-many.

Figure 1, Structure of MEDIATOR_1 Pattern

 The MEDIATOR_1 pattern has the following
behavioral elements. A concrete_colleague 'c' can
connect to a concrete_mediator 'm' showing that it
wants to communicate (through it) its data change to
other concrete_colleagues. This is reflected by
action Connect(m,c). A data change occurs in a
connected concrete_colleague 'c' and it informs a
concrete_mediator 'm' about it. This is reflected by
action Send (m,c,G), in which 'G' is the set of
concrete_colleagues which will be called by 'm'. 'G'
is defined by 'm' and not 'c'. The above change
triggers that a concrete_mediator sends messages to
other concrete_colleagues based on its internal
knowledge. This is reflected by action Call in
which, 'm' is a concrete_mediator, 'c' is the
concrete_colleague which sent the message to 'm'
and 'G' is the set of concrete_colleagues to be called
by 'm'. A connected concrete_colleague 'c' can
disconnect from a concrete_mediator 'm' showing it
no longer wants to communicate (through it) its data

change to other concrete_colleagues. This is
reflected by action Disconnect(m,c).

Table 2, TLA+ Specification of MEDIATOR_1 Pattern

---------------------- MODULE Mediator_1 ----------------------
CONSTANT concrete_mediator, concrete_colleague
VARIABLE Connected, Sent, Called
Inv_1 == /\ (Connected \subseteq concrete_mediator \X
 concrete_colleague)
 /\ (Sent \subseteq Connected)
 /\ (Called \subseteq Connected)
Init_1== /\ Connected={}
 /\ Sent={}
 /\ Called={}
Connect(m,c) == /\ <<m,c>> \notin Connected
 /\ Connected'=Connected \union {<<m,c>>}
 /\ Called'=Called \union {<<m,c>>}
 /\ UNCHANGED Sent
Send(m,c,G)== /\ <<m,c>> \in Connected
 /\ <<m,c>> \notin Sent
 /\ G # {}
 /\ G \in SUBSET concrete_colleague
 /\ c \notin G
 /\ \A y \in G: <<m,y>> \in Connected
 /\ {<<x,y>> \in (concrete_mediator \X G) : <<x,y>> \in
 Called /\ x=m}={}
 /\ Sent'=Sent \union {<<m,c>>}
 /\ Called'=Called \ {<<x,y>> \in (concrete_mediator \X
 G):x=m}
 /\ UNCHANGED Connected
Call== \E m \in concrete_mediator, c \in concrete_colleague, G \in
 SUBSET concrete_colleague :
 /\ <<m,c>> \in Connected
 /\ <<m,c>> \in Sent
 /\ G # {}
 /\ c \notin G
 /\ (\A y \in G: <<m,y>> \in Connected)
 /\ (\A y \in G: <<m,y>> \notin Called)
 /\ Called'=Called \union {<<x,y>> \in (concrete_mediator
 \X G):x=m}
 /\ Sent'=Sent\{<<m,c>>}
 /\ UNCHANGED Connected
Disconnect(m,c)== /\ <<m,c>> \in (Connected \intersect Called)
 /\ Connected'=Connected\{<<m,c>>}
 /\ Called'=Called\{<<m,c>>}
 /\ Sent'=Sent\{<<m,c>>}
Next_1 ==(\E m \in concrete_mediator, c \in concrete_colleague:
 Connect(m,c)) \/
 (\E m \in concrete_mediator, c \in concrete_colleague,
 G \in SUBSET concrete_colleague: Send(m,c,G)) \/
 Call \/
 (\E m \in concrete_mediator, c \in
 concrete_colleague:Disconnect(m,c))
v1 == <<Connected,Sent, Called>>
Spec_1== Init_1 /\ [][Next_1]_v1 /\ WF_v1 (Call)
THEOREM Spec_1 => []Inv_1
=====================================

Mediator Colleague

Table 2 depicts the TLA+ specification of the
MEDIATOR_1 pattern. TLA+ is well described in [7]
and due to space limitations, we do not intent to
further detail it here. Table 3 depicts the file
Mediator_1_Refines_Mediator_2.tla, which extends
the Mediator_1 module and creates an instance of
Mediator_2 module with the proper substitutions of
constants and variables defined in both patterns.
Moreover, a theorem was defined to show the
specification of the MEDIATOR _1 pattern (Spec_1)

Concrete_
Mediator

Connected,
Sent, Called * *

Concrete_
Colleague

3

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 544

implies the one of the MEDIATOR_2 (Spec_2 defined
as Med_2!Spec_2).
implies the one of the MEDIATOR_2 (Spec_2 defined
as Med_2!Spec_2).

Table 3, File Mediator_1_Refines_Mediator_2.tla Table 3, File Mediator_1_Refines_Mediator_2.tla
-------------------MODULE Mediator_1_Refines_Mediator_2------- -------------------MODULE Mediator_1_Refines_Mediator_2-------
EXTENDS Mediator_1 EXTENDS Mediator_1
Med_2==INSTANCE Mediator_2 WITH Med_2==INSTANCE Mediator_2 WITH
 _concrete_mediator <- concrete_mediator, _concrete_mediator <- concrete_mediator,
 subject_colleague <- concrete_colleague, subject_colleague <- concrete_colleague,
 observer_colleague <- concrete_colleague, observer_colleague <- concrete_colleague,
 _Connected<-Connected, _Connected<-Connected,
 _Sent<-Sent, _Sent<-Sent,
 _Called<-Called _Called<-Called
Spec_2==Med_2!Spec_2 Spec_2==Med_2!Spec_2
THEOREM Spec_1=>Spec_2 THEOREM Spec_1=>Spec_2
=== ===

* *

*** *

4.2 MEDIATOR_2 Pattern
Figure 2 depicts the structure of the most abstract
form of MEDIATOR_2 pattern. In addition to the
behavioral elements found in MEDIATOR_1,
MEDIATOR_2 has the following additional
features:

 The pattern has two concrete_colleagues which

are subject_colleague and observer_colleague.
 Only subject_colleagues are allowed to send

messages through the concrete_mediator while
only observer_colleagues are allowed to receive
them.

 Indeed, this version of the MEDIATOR pattern
introduces participants of the OBSERVER pattern [5],
in which concrete_subjects do not communicate
directly with concrete_observers but do that through
a concrete_mediator.

Figure 2, Structure of MEDIATOR_2 Pattern

Table 4 depicts the TLA+ specification of
MEDIATOR_2, in which, changes in the specification
as compared to Table 2 have been highlighted in
bold. Name substitutions have been achieved by
adding "_" to the names of classes, temporal
relations and actions. Table 5 depicts the file
Mediator_2_Refines_Mediator_1.tla, which extends
the Mediator_2 module and creates an instance of
Mediator_1 module with the proper substitutions of
constants and variables defined in both patterns.

Moreover, a theorem was defined to show the
specification of the MEDIATOR _2 pattern (Spec_2)
implies the one of the MEDIATOR_1 (Spec_1 defined
as Med_1!Spec_1).

Table 4, TLA+ Specification of MEDIATOR_2 Pattern
--------------------- MODULE Mediator_2 ----------------------
CONSTANT subject_colleague, observer_colleague,
 _concrete_mediator
VARIABLE _Connected, _Sent, _Called
Inv_2== /\ (_Connected \subseteq _concrete_mediator \X
 (subject_colleague \union observer_colleague))
 /\ (_Sent \subseteq _Connected)
 /\ (_Called \subseteq _Connected)
Init_2== /\ _Connected={}
 /\ _Sent={}
 /\ _Called={}
_Connect(m,c) == /\ <<m,c>> \notin _Connected
 /\ _Connected'=_Connected \union {<<m,c>>}
 /\ _Called'= IF c \in observer_colleague THEN
 _Called \union {<<m,c>>} ELSE _Called
 /\ UNCHANGED _Sent
_Send(m,c,G)== /\ c \in subject_colleague
 /\ <<m,c>> \in _Connected
 /\ <<m,c>> \notin _Sent
 /\ G # {}
 /\ G \in SUBSET observer_colleague
 /\ \A y \in G: <<m,y>> \in _Connected
 /\ {<<x,y>> \in (_concrete_mediator \X G) :
 <<x,y>> \in _Called /\ x=m}={}
 /\ _Sent'=_Sent \union {<<m,c>>}
 /\ _Called'=_Called \ {<<x,y>> \in
 (_concrete_mediator \X G):x=m}
 /\ UNCHANGED _Connected
_Call== \E m \in _concrete_mediator, c \in subject_colleague, G
 \in SUBSET observer_colleague :
 /\ <<m,c>> \in _Connected
 /\ <<m,c>> \in _Sent
 /\ (\A y \in G: <<m,y>> \in _Connected)
 /\ _Called'=_Called \union {<<x,y>> \in
 (_concrete_mediator \X G):x=m}
 /\ _Sent'=_Sent\{<<m,c>>}
 /\ UNCHANGED _Connected
_Disconnect(m,c)== /\ <<m,c>> \in (_Connected \intersect
 _Called)
 /\ _Connected'=_Connected\{<<m,c>>}
 /\ _Called'= IF c \in observer_colleague
 THEN _Called \ {<<m,c>>} ELSE _Called
 /\ _Sent'=_Sent\{<<m,c>>}
Next_2 ==(\E m \in _concrete_mediator, c \in (subject_colleague
 \union observer_colleague): _Connect(m,c)) \/
 (\E m \in _concrete_mediator, c \in subject_colleague, G
 \in SUBSET observer_colleague: _Send(m,c,G)) \/
 _Call \/
 (\E m \in _concrete_mediator, c \in (subject_colleague
 \union observer_colleague):_Disconnect(m,c))
v2 == <<_Connected,_Sent,_Called>>
Spec_2 == Init_2 /\ [][Next_2]_v2 /\ WF_v2 (_Call)
THEOREM Spec_2 =>[]Inv_2
=======================================

Table 5, File Mediator_1_Refines_Mediator_2.tla

-------------------MODULE Mediator_2_Refines_Mediator_1-------
EXTENDS Mediator_2
Med_1==INSTANCE Mediator_1 WITH
 concrete_mediator <- _concrete_mediator,
 concrete_colleague<- subject_colleague \union observer_colleague,
 Connected<-_Connected,
 Sent<-_Sent,
 Called<-_Called \union {<<x,y>> \in _concrete_mediator \X
subject_colleague: <<x,y>> \in _Connected}

Mediator Colleague

Concrete

Mediator

_Connected,
_Sent,

Called Subject
Colleague

Observer_
Colleague _Connected,

_Sent,

_Called

4

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 545

Spec_1==Med_1!Spec_1
THEOREM Spec_2=>Spec_1
======================================

4.3 Refinements Proof Using TLC Model

Checker
TLA+ models can be validated and verified in order
to make sure that a model faithfully reflects the
intended system. Model checkers can explore traces
allowed by the model, possibly detecting deadlock
or violation of invariants. Moreover, they can assist
in the formal verification of properties. TLC, the
TLA+ model checker can be used for verification
and validation of specifications written in TLA+.
TLC can analyze the state space of finite instances
of TLA+ models. In addition to the TLA+ model
written in an ASCII representation (like the ones in
Table 2-Table 5), TLC requires a configuration file
that defines the finite-state instance to analyze and
declares the specifications and the properties to
verify. TLC needs to know explicitly (thorough the
configuration file) which of the formulas represent
the system specification to analyze and which
theorem needs to be interpreted. Table 6 shows the
configuration files of the TLA+ files
Mediator_1_Refines_Mediator_2.tla and
Mediator_2_Refines_Mediator_1.tla.

Table 6, TLC Configuration files of
Mediator_1_Refines_Mediator_2.tla and

Mediator_2_Refines_Mediator_1.tla
MEDIATOR_1 Pattern MEDIATOR_2 Pattern

SPECIFICATION Spec_1
INVARIANT Inv_1
PROPERTY Spec_2
CONSTANTS
concrete_mediator={m1,m2}
concrete_colleague=
{c1,c2,c3,c4}

SPECIFICATION Spec_2
INVARIANT Inv_2
PROPERTY Spec_1
CONSTANTS
_concrete_mediator=
{_m1,_m2}
 subject_colleague={s1,s2}
observer_colleague={o1,o2}

 The configuration files define concrete instances
of TLA+ modules Mediator_1_Refines_Mediator_2
and Mediator_2_Refines_Mediator_1 by defining
the sets concrete_mediator, concrete_colleague,
_concrete_mediator, subject_colleague and
observer_colleague. The keyword SPECIFICATION
indicates the formula representing the main system
specification. Properties to be checked are specified
with the PROPERTY statement. This means that
TLC checks if Spec Prop is valid for the entire
state space. Invariants to be checked are specified
with the statement Spec Inv is valid which

requires checking that Spec Inv for every step of
a behavior.

 Figure 3 and 4 show windows in which TLC
was run on both specifications
(Mediator_1_Refines_Mediator_2 and
Mediator_2_Refines_Mediator_1). Both were
correct and showing indeed that MEDIATOR_1 is a
refinement of MEDIATOR_2 (and vice-versa). As
such the two specifications are indeed equivalent.

Figure 3, Running TLC on the

Mediator_1_Refines_Mediator_2 Specification

Figure 4, Running TLC on the

Mediator_2_Refines_Mediator_1 Specification

TLC firsts checks the syntactic and semantic
correctness of a TLA+ specification. It then
computes the graph of reachable states for the
instance of the model defined by the configuration
file, while verifying the invariants. Finally, the
temporal properties are verified over the state space.
Trying to analyze somewhat larger models, leads to
the well-known problem of state-space explosion.

5. Conclusion
The inherent benefits of patterns cannot be fully
exploited by the existing informal means of
specification. Formal specification of patterns brings
accuracy and facilitates tool support. This allows
rigorous reasoning about patterns and their
relationships. This intent was shown in this paper
using two versions of the MEDIATOR patterns as a
case study. Using TLA+, we were able to formally
specify the most abstract form of these patterns
without dealing with implementation details in
contrast to other pattern formalization approaches.
Moreover, using TLC we were able to check the
correctness of both specifications and prove that the

5

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 546

specifications of MEDIATOR_1 and MEDIATOR_2
patterns are equivalent.

[8] Martin, R.C., Riehle, D., and Buschmann, F.
(Editors), Pattern Languages of Program
Design, volume 3. Addison-Wesley, 1998.

References: [9] Noble, J., Classifying Relationships between
Object-Oriented Design Patterns. In
Proceedings of the Australian Software
Engineering Conference (ASWEC), Adelaide,
IEEE Computer Society Press pp. 98-107, 1998.

[1] Alexander, C., A Pattern Language. Oxford
University Press, 1977.

[2] Buschmann, F., Meunier, R., Rohnert, H.,
Sommerlad, P. and Stal. M. Pattern-Oriented
Software Architecture. John Wiley & Sons,
1996.

[10] Rumbaugh, J., Jacobson, I. and Booch, G.
The Unified Modeling Language Reference
Manual. Addison-Wesley, 1998. [3] J. O. Coplien and D. C. Schmidt, editors.

Pattern Languages of Program Design.
Addison-Wesley, 1996.

[11] Taibi, T. An integrated Approach to Design
Patterns Formalization, To appear in Design
Pattern Formalization Techniques, Toufik Taibi
(Ed), Idea Group Inc., Hershey, USA, 2007.

[4] N. Harrison, B. Foote and H. Rohnert (Editors),
Pattern Languages of Program Design, Volume
4, Addison-Wesley, 1999. [12] M. Voelter, J. Noble and D. Manolesco

(Editors), Pattern Languages of Program
Design, Volume 5, Addison-Wesley, 2006.

[5] Gamma, E., Helm, R., Johnson, R. and
Vlissides, J. Design patterns: elements of
reusable object-oriented systems. Addison-
Wesley, 1995.

[13] Vlissides, J.M., Multicast, C++ Report,
Sep’1997.

[6] Lamport, L. The temporal logic of actions. ACM
transactions on Programming Languages and
Systems, 16, 3 (1994). 872-923.

[14] Vlissides, J.M., Multicast-Observer=Typed
Message, C++ Report, Nov-Dec’1997.

[7] Lamport L., Specifying Systems: The TLA+
Language and Tools for Hardware and
Software Engineers, Addison-Wesley
Professional, 2002.

[15] J. M. Vlissides, J. O. Coplien, and N. L.
Kerth, editors. Pattern Languages of Program
Design, volume 2. Addison-Wesley, 1996.

[16] Zimmer, W., Relationships between design
patterns. In Pattern Languages of Program
Design. Addison-Wesley, 1994.

6

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 547

