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Abstract: - Design patterns are reuse artifacts meant to improve the quality of software designs as well as the 
productivity of designers. Patterns (and their relationships) are mostly described in an informal fashion which 
leads to ambiguity and limits tools support. This has worsened with the growing number of well-established 
and candidate patterns. This paper discusses how to formally specify the "solution element" of patterns and 
their relationships using TLA+, the formal specification language of Temporal Logic of Actions (TLA). The 
paper first classifies and formally defines the most common relationships between patterns. Then, it shows 
how to automatically proof the existence of a "refines" relationship between patterns using TLC− the TLA+ 
Model Checker.  
 
Keywords: - Temporal Logic of Action (TLA), TLA+, temporal relations, actions, refinement, TLC. 
 
1. Introduction 
Design patterns represent the culmination of many 
years in which experienced designers were solving 
problems repeatedly encountered within certain 
contexts. Hence, reusing patterns yields better 
quality software within reduced time frame. Patterns 
are usually described in catalogs. The last decade 
has seen the publication of many such catalogs 
[3][15][8][4][12]. Most pattern writers use a 
combination of textual descriptions, Object-Oriented 
(OO) graphical notations [10] and sample code 
fragments to describe patterns.  Informal 
specifications are ambiguous and sometimes 
misleading in understanding and properly applying 
patterns. Hence, there is a need for a formal means 
to accurately describe patterns.  
     As the number of patterns (well established and 
candidate patterns) is growing, it is of major 
importance that relationships between patterns are 
described precisely in order to facilitate the correct 
usage of patterns. Unfortunately, pattern catalogs do 
not describe these relationships in a consistent 
manner but rather each uses its own classification 
terminology. This paper discusses how to formally 
specify patterns and their relationships using TLA+ 
[7], the formal specification language of Temporal 
Logic of Actions (TLA) [6]. This works builds-up 
from the work done in [11] on Balanced Pattern 
Specification Language (BPSL).  
      This paper first classifies and formally defines 
the most common relationships between patterns. 
Then, it shows how to automatically proof the 

existence of a "refines" relationship between 
patterns using TLC [7]− the TLA+ Model Checker.  
     This work as many others in this field focuses on 
formally specifying the solution element of a pattern 
and not on its other elements such as the problem 
solved, the context, the important forces [1] acting 
within the problem, consequences, etc. The reason 
being that the verbal description of the solution 
element is the most coherent and the most tangible 
to formalize. 
     The rest of the paper is organized as follows. 
Section 2 provides a detailed description of how 
patterns are formally specified using TLA+. Section 
3 classifies the relationships between patterns and 
formally describes them. Section 4 provides a case 
study, while section 5 concludes the paper. 
 
2. Formal Specification of Design 
Patterns Using TLA+ 
TLA is a logic for specifying and reasoning about 
concurrent and reactive systems. A typical TLA 
formula has the form: Init∧ [Next]u∧Liveness. Init 
is the initial-state predicate—a formula describing 
all legal initial states. [Next]u is the next-state 
relation, which specifies all possible steps (pairs of 
successive states) in a behavior of the system.  The 
subscript u is a tuple of flexible variables and the 
notation [Next]u allows stuttering steps in which 
variables in u do not change. Next is a disjunction of 
actions that describe the different system operations. 
An action is a mathematical formula in which 
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unprimed variables refer to the first state of a step 
and primed variables refer to its second state. 
Actions can contain parameters symbols which do 
not represent known values like 1 or “abc”. 
However, unlike flexible variables, the value of a 
parameter does not change. It must be the same in 
the old and new state. The parameter denotes some 
fixed but unknown value. It is thus called a rigid 
variable. Liveness is a temporal formula that 
specifies the liveness (progress) properties of the 
system as the conjunction of fairness conditions 
(usually Weak Fairness denoted WF in the case of 
pattern specification) on actions.  
       The structural aspect of patterns is represented 
by sub-classes participating in the pattern and the 
association between them. Classes are represented as 
sets of instances (objects), each of which is 
represented by an identity taken from an infinite set 
of object identities.  As such we use the terms object 
and object identity interchangeably.  
        The behavioral aspect of patterns is described 
as set of behaviors. New states are produced through 
the execution of actions. Each state is defined by the 
values of temporal relations. Temporal relations are 
mathematical relations defined between objects of 
two classes. A temporal relation is thus a subset of 
the Cartesian product of the two sets (classes). 
Temporal relations are defined as TLA flexible 
variables. They have been called "temporal" because 
their value changes over time while actions are being 
executed. 
      Associations between sub-classes participating in 
the pattern generate the "main" temporal relations 
while the other temporal relations are derived from 
the "main" ones. For example in the specification of 
MEDIATOR_1, the temporal relation Connected is 
generated from the association between the classes 
concrete_mediator and concrete_colleague, while 
the temporal relations Sent and Called are "derived" 
from Connected. 
      Temporal relations are means of providing an 
abstract way of specification such that low-level 
programming details are avoided. In later low-level 
versions of the specification, temporal relations can 
be defined as implementation-level TLA variables.  
     The structure of a TLA+ formula for specifying 
patterns is shown in Table 1. The theorems reflect 
that the execution of the actions preserve invariants 
(which at the minimum contain type definitions of 
flexible variables) and satisfy pattern properties.  

 
Table 1, Structure of a TLA+ Formula 

for Specifying Patterns 
Invariants ≜ I1∧...∧Ik                      {Pattern invariants} 
Properties≜ P1∧...∧Pl                     {Pattern Properties}          

Init ≜ P                                           {P is the initial predicate} 
Next ≜ A1∨...∨Am                            {A1...Am are m actions each of  
                                                         which could have  rigid 
variables}              
u=〈 u1,...,un〉                                    {tuple of n flexible variables} 
Spec ≜ Init ∧ [Next]u ∧ WFu(A)   {A=Ai1∨...∨Ai2,1<=i1<=i2<=m }      
Theorem  Spec⇒ Invariants          {Ensuring pattern invariants are  
                                                         always preserved} 
Theorem Spec⇒Properties             {Ensuring pattern properties are  
                                                        satisfied}   

 

3.  Classification and Formal 
Specification of Patterns Relationships 
There are not many articles investigating the 
relationships between patterns. Nonetheless, the 
most prominent studies were done by Nobel [9] and 
Zimmer [16]. Our work builds on Nobel's 
classification of primary relationships. However, we 
have provided our own version of the definitions of 
these relationships in addition to providing the 
mathematical definition for them. Relationships 
between patterns can be classified in three 
categories: "uses", "refines", "differs from" and 
"equivalent to". The next sections describe each of 
these relationships.  
 
3.1. "Uses" 
The "uses" relationship is the most common form of 
pattern relationships. Informally it describes that a 
"bigger" pattern is made of "smaller" patterns.  For 
example, the MODEL-VIEW-CONTROLLER pattern 
[2] can be seen as a composite of the OBSERVER, 
STRATEGY, and COMPOSITE patterns [5]. Formally, 
the "uses" relationship can be defined as follows. If 
P is a pattern made-of patterns P1,..,Pn each 
specified using formulas Ψ1,…, Ψn respectively and 
if Q is a pattern specified using formula Φ, P "uses" 
Q if and only if (iff): ∃ i : Ψi ⇔ Φ. 
 
3.2. "Refines" 
A pattern "refines" another pattern, if one pattern is 
a specialization of a more general, simpler, or more 
abstract pattern. The "uses" relationship is similar to 
composition, while the "refines" relationship is 
similar to inheritance. For example, TYPED MESSAGE 
[14] is a refinement of MULTICAST [13]. Formally, 
the "refines" relationship can be defined as follows. 
If P is a pattern specified using formula Ψ  and if Q 
is a pattern specified using formula Φ, Q "refines" P 
iff: Φ ⇒ Ψ. Note that the above is done with proper 
substitutions of flexible variables. 
 
3.3. "Differs From" and "Is Equivalent to" 
A pattern "differs from" another pattern if they 
provide mutually exclusive solutions to their 
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problems (their solutions have nothing in common). 
Formally, the "differs from" relationship can be 
defined as follows. If P is a pattern formalized using 
formula Ψ  and if Q is  pattern formalized using 
formula Φ, P "differs from" Q iff: ¬(Ψ⇒ Φ)  ∧ ¬ 
(Φ⇒Ψ ). The antonym of the above relationship is 
"equivalent to". If P is a pattern formalized using 
formula Ψ  and if Q is a pattern formalized using 
formula Φ, P "is equivalent to" Q iff: (Ψ Φ). 

 
4. Case Study 
This section describes two versions of the 
MEDIATOR pattern [5] which we call MEDIATOR_1 
and MEDIATOR_2.  We will prove using TLC that 
the two patterns have equivalent specifications.  
 
4.1 MEDIATOR_1 Pattern 
Figure 1 depicts the structure of the most abstract 
form of MEDIATOR_1 pattern. Connected, Sent and 
Called are temporal relations defined between 
concrete_mediator and concrete_colleague. "*" 
represent the cardinality of the relations which is 
many-to-many. 
 
 

 

 

Figure 1, Structure of MEDIATOR_1 Pattern 

     The MEDIATOR_1 pattern has the following 
behavioral elements. A concrete_colleague 'c' can 
connect to a concrete_mediator 'm' showing that it 
wants to communicate (through it) its data change to 
other concrete_colleagues. This is reflected by 
action Connect(m,c). A data change occurs in a 
connected concrete_colleague 'c' and it informs a 
concrete_mediator 'm' about it. This is reflected by 
action Send (m,c,G), in which 'G' is the set of 
concrete_colleagues which will be called by 'm'. 'G' 
is defined by 'm' and not 'c'. The above change 
triggers that a concrete_mediator sends messages to 
other concrete_colleagues based on its internal 
knowledge. This is reflected by action Call in 
which, 'm' is a concrete_mediator, 'c' is the 
concrete_colleague which sent the message to 'm' 
and 'G' is the set of concrete_colleagues to be called 
by 'm'. A connected concrete_colleague 'c' can 
disconnect from a concrete_mediator 'm' showing it 
no longer wants to communicate (through it) its data 

change to other concrete_colleagues. This is 
reflected by action Disconnect(m,c). 
      
Table 2, TLA+ Specification of MEDIATOR_1 Pattern 

---------------------- MODULE Mediator_1 ---------------------- 
CONSTANT concrete_mediator, concrete_colleague 
VARIABLE Connected, Sent, Called 
Inv_1 == /\ (Connected \subseteq concrete_mediator \X    
                   concrete_colleague)  
               /\ (Sent \subseteq Connected) 
              /\ (Called \subseteq Connected) 
Init_1== /\ Connected={}   
               /\ Sent={}  
               /\ Called={} 
Connect(m,c) == /\ <<m,c>> \notin Connected   
                /\ Connected'=Connected \union {<<m,c>>}  
                /\ Called'=Called \union {<<m,c>>} 
                /\ UNCHANGED Sent 
Send(m,c,G)== /\ <<m,c>> \in Connected 
              /\ <<m,c>> \notin Sent   
              /\ G # {} 
              /\ G \in SUBSET concrete_colleague 
              /\ c \notin G 
              /\ \A y \in G: <<m,y>> \in Connected 
              /\ {<<x,y>> \in (concrete_mediator \X G) : <<x,y>> \in   
                 Called /\ x=m}={} 
              /\ Sent'=Sent \union {<<m,c>>} 
              /\ Called'=Called \ {<<x,y>> \in (concrete_mediator \X  
                 G):x=m} 
              /\ UNCHANGED Connected 
Call== \E m \in concrete_mediator, c \in concrete_colleague, G \in  
             SUBSET concrete_colleague :  
             /\ <<m,c>> \in Connected 
             /\ <<m,c>> \in Sent  
             /\ G # {} 
             /\ c \notin G  
             /\ (\A y \in G: <<m,y>> \in Connected)  
             /\ (\A y \in G: <<m,y>> \notin Called)  
             /\ Called'=Called \union {<<x,y>> \in (concrete_mediator  
                \X   G):x=m}  
             /\ Sent'=Sent\{<<m,c>>} 
             /\ UNCHANGED Connected               
Disconnect(m,c)== /\ <<m,c>> \in (Connected \intersect Called) 
                                /\ Connected'=Connected\{<<m,c>>}   
                               /\ Called'=Called\{<<m,c>>} 
                               /\ Sent'=Sent\{<<m,c>>} 
Next_1 ==(\E m \in concrete_mediator, c \in concrete_colleague:    
                   Connect(m,c)) \/  
                  (\E m \in concrete_mediator, c \in concrete_colleague,  
                 G \in SUBSET concrete_colleague: Send(m,c,G)) \/  
                 Call \/  
                  (\E m \in concrete_mediator, c \in  
                 concrete_colleague:Disconnect(m,c)) 
v1 == <<Connected,Sent, Called>> 
Spec_1==  Init_1 /\ [][Next_1]_v1 /\ WF_v1 (Call) 
THEOREM  Spec_1 => []Inv_1 
===================================== 

Mediator Colleague 

 
Table 2 depicts the TLA+ specification of the 
MEDIATOR_1 pattern. TLA+ is well described in [7] 
and due to space limitations, we do not intent to 
further detail it here. Table 3 depicts the file 
Mediator_1_Refines_Mediator_2.tla, which extends 
the Mediator_1 module and creates an instance of 
Mediator_2 module with the proper substitutions of 
constants and variables defined in both patterns. 
Moreover, a theorem was defined to show the 
specification of the MEDIATOR _1 pattern (Spec_1) 

Concrete_ 
Mediator 

Connected, 
Sent, Called * * 

Concrete_ 
Colleague 
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implies the one of the MEDIATOR_2 (Spec_2 defined 
as Med_2!Spec_2).   
implies the one of the MEDIATOR_2 (Spec_2 defined 
as Med_2!Spec_2).   
  

Table 3, File Mediator_1_Refines_Mediator_2.tla Table 3, File Mediator_1_Refines_Mediator_2.tla 
-------------------MODULE Mediator_1_Refines_Mediator_2------- -------------------MODULE Mediator_1_Refines_Mediator_2------- 
EXTENDS Mediator_1 EXTENDS Mediator_1 
Med_2==INSTANCE Mediator_2 WITH  Med_2==INSTANCE Mediator_2 WITH  
     _concrete_mediator <- concrete_mediator,      _concrete_mediator <- concrete_mediator, 
     subject_colleague <- concrete_colleague,      subject_colleague <- concrete_colleague, 
     observer_colleague <- concrete_colleague,      observer_colleague <- concrete_colleague, 
     _Connected<-Connected,       _Connected<-Connected,  
     _Sent<-Sent,       _Sent<-Sent,  
     _Called<-Called      _Called<-Called 
Spec_2==Med_2!Spec_2  Spec_2==Med_2!Spec_2  
THEOREM Spec_1=>Spec_2 THEOREM Spec_1=>Spec_2 
========================================= ========================================= 

* *

*** * 

 
4.2 MEDIATOR_2 Pattern 
Figure 2 depicts the structure of the most abstract 
form of MEDIATOR_2 pattern. In addition to the 
behavioral elements found in MEDIATOR_1, 
MEDIATOR_2 has the following additional 
features:  
 
 The pattern has two concrete_colleagues which 

are subject_colleague and observer_colleague. 
 Only subject_colleagues are allowed to send 

messages through the concrete_mediator while 
only observer_colleagues are allowed to receive 
them. 

 
      Indeed, this version of the MEDIATOR pattern 
introduces participants of the OBSERVER pattern [5], 
in which concrete_subjects do not communicate 
directly with concrete_observers but do that through 
a concrete_mediator. 
 
 

 

 

 

Figure 2, Structure of  MEDIATOR_2 Pattern 
 
Table 4 depicts the TLA+ specification of 
MEDIATOR_2, in which, changes in the specification 
as compared to Table 2 have been highlighted in 
bold. Name substitutions have been achieved by 
adding "_" to the names of classes, temporal 
relations and actions. Table 5 depicts the file 
Mediator_2_Refines_Mediator_1.tla, which extends 
the Mediator_2 module and creates an instance of 
Mediator_1 module with the proper substitutions of 
constants and variables defined in both patterns. 

Moreover, a theorem was defined to show the 
specification of the MEDIATOR _2 pattern (Spec_2) 
implies the one of the MEDIATOR_1 (Spec_1 defined 
as Med_1!Spec_1).   
 
Table 4, TLA+ Specification of MEDIATOR_2 Pattern 
--------------------- MODULE Mediator_2 ---------------------- 
CONSTANT subject_colleague, observer_colleague,      
                    _concrete_mediator 
VARIABLE _Connected, _Sent, _Called 
Inv_2== /\ (_Connected \subseteq _concrete_mediator \X   
                (subject_colleague \union observer_colleague))  
               /\ (_Sent \subseteq _Connected) 
               /\ (_Called \subseteq _Connected) 
Init_2== /\ _Connected={}   
               /\ _Sent={}  
               /\ _Called={} 
_Connect(m,c) ==  /\ <<m,c>> \notin _Connected   
                               /\ _Connected'=_Connected \union {<<m,c>>}  
                               /\ _Called'= IF c \in observer_colleague THEN  
                                   _Called \union {<<m,c>>} ELSE _Called 
                               /\ UNCHANGED _Sent 
_Send(m,c,G)==  /\ c \in subject_colleague 
                             /\ <<m,c>> \in _Connected 
                             /\ <<m,c>> \notin _Sent   
                             /\ G # {} 
                             /\ G \in SUBSET observer_colleague 
                             /\ \A y \in G: <<m,y>> \in _Connected 
                             /\ {<<x,y>> \in (_concrete_mediator \X G) :  
                                <<x,y>> \in _Called /\ x=m}={} 
                             /\ _Sent'=_Sent \union {<<m,c>>} 
                             /\ _Called'=_Called \ {<<x,y>> \in  
                                (_concrete_mediator \X G):x=m} 
                             /\ UNCHANGED _Connected 
_Call== \E m \in _concrete_mediator, c \in subject_colleague, G  
                 \in  SUBSET observer_colleague :  
               /\ <<m,c>> \in _Connected 
               /\ <<m,c>> \in _Sent  
               /\ (\A y \in G: <<m,y>> \in _Connected)  
               /\ _Called'=_Called \union {<<x,y>> \in   
                   (_concrete_mediator \X G):x=m}  
               /\ _Sent'=_Sent\{<<m,c>>} 
               /\ UNCHANGED _Connected 
_Disconnect(m,c)==  /\ <<m,c>> \in (_Connected \intersect  
                                       _Called) 
                                   /\ _Connected'=_Connected\{<<m,c>>}   
                                   /\ _Called'= IF c \in observer_colleague  
                                      THEN _Called \ {<<m,c>>} ELSE _Called 
                                   /\ _Sent'=_Sent\{<<m,c>>} 
Next_2 ==(\E m \in _concrete_mediator, c \in (subject_colleague  
                \union observer_colleague):   _Connect(m,c)) \/  
                (\E m \in _concrete_mediator, c \in subject_colleague, G  
               \in SUBSET observer_colleague: _Send(m,c,G)) \/  
                _Call \/  
               (\E m \in _concrete_mediator, c \in (subject_colleague   
                \union observer_colleague):_Disconnect(m,c)) 
v2 == <<_Connected,_Sent,_Called>> 
Spec_2 ==  Init_2 /\ [][Next_2]_v2 /\ WF_v2 (_Call) 
THEOREM Spec_2 =>[]Inv_2 
======================================= 

 
Table 5, File Mediator_1_Refines_Mediator_2.tla 

-------------------MODULE Mediator_2_Refines_Mediator_1------- 
EXTENDS Mediator_2 
Med_1==INSTANCE Mediator_1 WITH  
     concrete_mediator <- _concrete_mediator, 
     concrete_colleague<- subject_colleague \union observer_colleague,
     Connected<-_Connected,  
     Sent<-_Sent,  
     Called<-_Called \union {<<x,y>> \in _concrete_mediator \X 
subject_colleague: <<x,y>> \in _Connected} 

Mediator Colleague 

_Concrete_ 

Mediator 

_Connected, 
_Sent,  

_Called Subject_ 
Colleague 

Observer_
Colleague _Connected, 

_Sent,  

_Called 
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Spec_1==Med_1!Spec_1  
THEOREM Spec_2=>Spec_1 
====================================== 

 
4.3 Refinements Proof Using TLC Model 

Checker 
TLA+ models can be validated and verified in order 
to make sure that a model faithfully reflects the 
intended system. Model checkers can explore traces 
allowed by the model, possibly detecting deadlock 
or violation of invariants. Moreover, they can assist 
in the formal verification of properties. TLC, the 
TLA+ model checker can be used for verification 
and validation of specifications written in TLA+. 
TLC can analyze the state space of finite instances 
of TLA+ models. In addition to the TLA+ model 
written in an ASCII representation (like the ones in 
Table 2-Table 5), TLC requires a configuration file 
that defines the finite-state instance to analyze and 
declares the specifications and the properties to 
verify. TLC needs to know explicitly (thorough the 
configuration file) which of the formulas represent 
the system specification to analyze and which 
theorem needs to be interpreted. Table 6 shows the 
configuration files of the TLA+ files 
Mediator_1_Refines_Mediator_2.tla and 
Mediator_2_Refines_Mediator_1.tla. 
 

Table 6, TLC Configuration files of 
Mediator_1_Refines_Mediator_2.tla and 

Mediator_2_Refines_Mediator_1.tla 
MEDIATOR_1 Pattern MEDIATOR_2 Pattern 

SPECIFICATION Spec_1 
INVARIANT Inv_1 
PROPERTY Spec_2 
CONSTANTS 
concrete_mediator={m1,m2}  
concrete_colleague= 
{c1,c2,c3,c4} 
           

SPECIFICATION Spec_2 
INVARIANT Inv_2 
PROPERTY Spec_1 
CONSTANTS 
_concrete_mediator= 
{_m1,_m2} 
 subject_colleague={s1,s2} 
observer_colleague={o1,o2} 

 
     The configuration files define concrete instances 
of TLA+ modules Mediator_1_Refines_Mediator_2 
and Mediator_2_Refines_Mediator_1 by defining 
the sets concrete_mediator, concrete_colleague, 
_concrete_mediator, subject_colleague and 
observer_colleague. The keyword SPECIFICATION 
indicates the formula representing the main system 
specification. Properties to be checked are specified 
with the PROPERTY statement. This means that 
TLC checks if Spec  Prop is valid for the entire 
state space. Invariants to be checked are specified 
with the statement Spec  Inv is valid which 

requires checking that Spec  Inv for every step of 
a behavior. 

       Figure 3 and 4 show windows in which TLC 
was run on both specifications 
(Mediator_1_Refines_Mediator_2 and 
Mediator_2_Refines_Mediator_1). Both were 
correct and showing indeed that MEDIATOR_1 is a 
refinement of MEDIATOR_2 (and vice-versa). As 
such the two specifications are indeed equivalent. 
 

 
Figure 3, Running TLC on the 

Mediator_1_Refines_Mediator_2 Specification 
 

 
Figure 4, Running TLC on the 

Mediator_2_Refines_Mediator_1 Specification 
 

TLC firsts checks the syntactic and semantic 
correctness of a TLA+ specification.  It then 
computes the graph of reachable states for the 
instance of the model defined by the configuration 
file, while verifying the invariants. Finally, the 
temporal properties are verified over the state space.  
Trying to analyze somewhat larger models, leads to 
the well-known problem of state-space explosion.  
 
5. Conclusion 
The inherent benefits of patterns cannot be fully 
exploited by the existing informal means of 
specification. Formal specification of patterns brings 
accuracy and facilitates tool support. This allows 
rigorous reasoning about patterns and their 
relationships. This intent was shown in this paper 
using two versions of the MEDIATOR patterns as a 
case study. Using TLA+, we were able to formally 
specify the most abstract form of these patterns 
without dealing with implementation details in 
contrast to other pattern formalization approaches. 
Moreover, using TLC we were able to check the 
correctness of both specifications and prove that the 
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specifications of MEDIATOR_1 and MEDIATOR_2 
patterns are equivalent. 
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