
Proposal of Search Method Compressed the One-Way Branch
based on the Double-Array Structure

YASUMASA NAKAMURA
amino@mugen.cc.osaka-kyoiku.ac.jp

HISATOSHI MOCHIZUKI
motizuki@cc.osaka-kyoiku.ac.jp

Osaka Kyoiku University
Information Science

Asahigaoka 689-1 Kashiwara-shi Osaka 582-8582
JAPAN

Abstract: Digital search is expressed by the digital search tree which considers a part of keys as transitions.
Therefore, it is frequently used for various applications, such as natural language dictionaries because of being
dependent on the key length for search processing. There is the compressed digital search tree which com-
pressed the one-way branches after the leaf and reduces nodes on digital search tree. However the one-way
branches has still existed on the compressed digital search tree. In this paper, we present the search method
which used the digital search tree compressed all one-way branches used the double-array structure. The sim-
ulation results confirmed that the proposed method is more efficient than the original method.

Key–Words: Information Retrieval, Digital Search, the Double-Array, Patricia, Data Structure, Trie

1 Introduction
Search processings such as hash based on comparison
between keys are dependent on the number of keys.
On the other hand, digital search comparisons be-
tween a part of keys[2]. Therefore, it is dependent on
the key length and frequently used for various applica-
tions, such as natural language dictionaries, database
systems and compilers.

Digital search is expressed by the digital search
tree (DS-tree) which considers a part of keys as transi-
tions. DS-trees are divides into three types, which are
full DS-tree (FDS-tree), compressed DS-tree (CDS-
tree) and Patricia. FDS-tree has all parts of keys. On
the other hand, CDS-tree and Patricia have some parts
of keys. CDS-tree expresses the common prefix. Pa-
tricia does not have nodes which have only one child
(one-way branch) [1, 2]. DS-tree often expressed as
the binary tree, actually Patricia is the binary tree. Be-
cause of the binary tree is easier to realize than the
multi-way tree and its space efficiency are better than
the multi-way tree.

However, the binary tree has many nodes and its
search speed is slower than multi-way tree. There is
the double-array structure as an effective data struc-
ture which realizes multi-way tree. It has quick search
speed and high space efficiency. At the present, a va-
riety of the high speed updating techniques are pro-
posed to the double-array[3, 4].

The present work is intended to reduce the one-
way branches of multi-way tree used the double-array.

Therefore, the search technique and the updating tech-
niques of having introduced the node which stored
transition informations are proposed.

The rest of the paper is organized as follows.
In section 2, we give overviews of the double-array
structure. In section 3, we propose a search method
compressed the one-way branches used the double-
array structure. In section 4, we evaluation our pro-
posed methods. Finally, we conclude the paper and
describe future works in section 5.

2 The Double-Array Structure
The double-array is a data structure which realized
FDS-tree and CDS-tree. In this section, we explain
the double-array structure taking the case of key set
K. Where numerical values of ‘a’, ‘b’, . . ., ‘o’ are
1, 2, . . ., 15 respectively and they are translated into
binary numbers of 4 bits.

K = {academe，academic，cable，cache，call}

The double-array uses one-dimensional arrays
BASE and CHECK[5]. Their index numbers corre-
spond to node numbers in DS-tree. The BASE value
of the node on DS-tree is the basis value which is the
index number of the child. The CHECK value of the
node on DS-tree is the index number of the parent.

The concept of the double-array is to represent
transition by giving Eq.1 and Eq.2. Where B[x]
and C[x] are the values of element x of BASE and

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 471

s t
a

a

t

s

s B[s]

BASE

CHECK s

ta

: transition

: child

: parent

Fig. 1: Transition of DS-tree by the double-array.

c

l

he

le1

l

c
b

ac

e

a

medac

i

11 6 2 7 15 16
8

12

13 10

4

5

14 o
...

a
number
of node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
BASE 10 3 -4 -7 1 10 -1 2 3 -2 9 -10 3 3

CHECK 6 10 10 11 2 16 13 1 16 1 10 7 15
1 2 4 7 10

TAIL c le he l

Fig. 2: Examples of CDS-tree and the double-array
for K.

CHECK respectively, s is the original node, t is the
child of s and a is the numerical value of transition.
The transition by the double-array is shown in Fig.1.

B[s] + a = t (1)
C[t] = s (2)

For example, CDS-tree and the double-array for
K are shown in Fig.2. As to a transition from original
node 10 by ‘b’, a child of 10 is B[10]+ b = 2+2 = 4
used Eq.1. After that, C[4] = 10 is compared with an
original node 10 used Eq.2, in this case both are equal.
Thus, a transition from 10 to 4 by ‘b’ is success.

Moreover, a doubly list called E-Link is created
with the elements of the double-array called the empty
element[5, 3, 4]. The empty element is not used as a
node of DS-tree. E-Link is given by the BASE and
CHECK values of the empty element. In the example
of the double-array, for simplicity, the values of the
empty elements are made blank.

A one-dimensional array TAIL is used to realize
CDS-tree[5]. The double-array expresses the common
prefix, TAIL expresses the one-way branches after the
common prefix called the suffix. Where T [x] is the
value of element x of TAIL and T + x is the suffix
which begin from T [x].

The value of BASE as to the leaf on CDS-tree is

ai+1 ... ai+n
ai ai+n+1

a’i+n+1

ai+1 ... ai+n

: prefix node

: length of prefixn

: prefix

Fig. 3: Definition of the prefix node.

c

l

he

le

1

l

c

b
a

c

e

a

cadem

i

11 8

12

13
4

5

14

2

3

Example of DS-tree
used the prefix node(a)

academic

call

cache

cable11

Example of Patricia(b)

academe

1

0

position
of key

24

2

8

Fig. 4: Examples of DS-tree used the prefix node and
Patricia for K.

negative value, and considered as the link of the suf-
fix on TAIL by giving Eq.3. Where leaf is the node
number of leaf on CDS-tree and loc is index number
on TAIL of the suffix. For example, as to a suffix of a
leaf 4 is T + (−B[4]) = T + 4 =“le” used Eq.3.

B[leaf] = −loc (3)

3 An Approach Compressed the
One-Way Branches

In this section, we propose the search methods fo-
cused on the one-way branches which exist on CDS-
tree. It is important to mention here that the node
which stored transitions information is defined.

3.1 Data Structure
As to the one-way branches ai+1，ai+2，. . .，ai+n of
length n, the parent of ai+1-transition to the child of
ai+n-transition are unique identifiable. To reduce the
node on FDS-tree, the suffixes on the double-array are
replaced on TAIL.

However, CDS-tree has the one-way branches
called the prefix. Therefore, the prefixes on the
double-array are also replaced on TAIL. The node
called the prefix node is defined to manage the pre-
fix. Then, the definition of the prefix node is shown in

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 472

s t2

s
BASE

CHECK s

t3t1

t3 SIBLING t1t3t2

s

t2

s

t1

Fig. 5: Illustration of SIBLING.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BASE 10 -9 -1 -10 -13 -6 3 -7 2 16

CHECK -1 -5 13 13 11 1 11 1 13
SIBLING 1 4 8 5 14 12 -13 3 -11 2

1 6 7 9 10 13 16
TAIL cadem c a le he l

Fig. 6: Example of the double-array used the prefix
node for K.

Fig.3. And, the DS-tree used the prefix node for K is
shown in Fig.4(a).

The BASE value of the prefix node is the link of
prefix on TAIL, and the CEHCK value is the prefix
length by giving Eq.4.

B[p] = −loc, C[p] = −n (4)

The transition to the prefix node is the constant
PCODE. If two or more parents with an equal BASE
value exist, each parents do not have the prefix node
or one of them has the prefix node. In the case of the
later, it can not judge which the prefix node has the
prefix node, because of the CHECK value is not the
index number of its parent.

Therefore, a one-dimensional array SIBLING is
defined. SIBLING manages the siblings which are the
other children of its parent, in order to fast computa-
tion of the children searching in the updating process-
ing. The SIBLING value of the child is other child of
its parent, and create the circular list which is shown
in Fig.5. In this paper, this list called S-Link.

Then, the SIBLING value is given by Eq.5.
Where S[x] is the values of element x of SIBLING
, the default value of S[x] is x, b is the number of the
children of the arbitrary parent s and t1, t2, . . ., tb are
index numbers of the children of s.

S[ti] = ti+1(1 ≤ i ≤ b − 1), S[tb] = t1 (5)

In addition, SIBLING manages whether the par-
ent has the prefix node. The SIBLING value of the
parent which has the prefix node is negative value.
Where Abs(v) is a function which return to the ab-
solute value of v.

Function: Search(key)
Step(S-1): Initialization

Store 0 in pos which is the position of the key and
store 1 in s which is the parent.

Step(S-2): Existence of the prefix node
If S[s] is the negative value, store B[s] + PCODE
in p which is the prefix node, enqueue {pos, p} and
advance pos by −C[p].

Step(S-3): Transition
Store B[s]+key[pos] in t which is child. If s and C[t]
are equal, store t in s and advance pos by 1. Other-
wise this process is fail. If B[s] is the negative value,
proceed to (S-4), otherwise proceed to (S-2).

Step(S-4): Comparison about the prefixes
Dequeue {posq, pq} and compare key + posq and
T + (−B[pq]) of length −C[pq]. If both are equal as
to all element of queue, proceed to (S-5), otherwise
this process is fail.

Step(S-5): Comparison about the suffix
Compare key[pos] and T+(−B[t]). If both are equal,
this process is success, otherwise this process is fail.

Fig. 7: Algorithm of Search

For example, the double-array used the prefix
node and SIBLING for K is shown in Fig.6. Where
numerical values of PCODE is 0. A next sibling of
a node 11 is Abs(S[11])= 13, and a next sibling is
Abs(S[13])= 11. In addition, a node 11 has a prefix
node because of S[11] is the negative value. A prefix
node of 11 is B[11] + PCODE = 3. A prefix node
3 shows a prefix T + (−B[3]) = “cadem” of length
−C[3] = 5.

Patricia for K is shown in Fig.4(b). Patricia is the
binary tree and two nodes are needed to distinguish
“cable”, “cache” and “call”. However, DS-tree used
the prefix node needs only one node.

3.2 A Searching Algorithm
A searching algorithm is presented in Fig.7. There are
three conditions in which search succeed. First, tran-
sition from a root to a leaf on DS-tree by satisfied Eq.1
and Eq.2 in (S-2) and (S-3). Unlike the double-array,
the transitions about the prefixes are not checked. Sec-
ond, all prefixes which prefix nodes shows are equal
key in (S-4). It is the point that this also differs from
the double-array. Last, the suffix which leaf shows is
equal key in (S-5).

For example, searching “academic” in Fig.6 is ex-
plained. In (S-1), store 0 in pos and the root 1 in s. In
(S-2), S[1] = 1 is not the negative and a node 1 does
not have a prefix node. Then in (S-3), transit from
s = 1 to t = B[1] + key[0] = 11 by key[0] = ‘a’ and

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 473

store 11 in s, 0 + 1 in pos.
In (S-2), 11 has a prefix node 3 which shows a

prefix of length −C[3] = 5. Then, enqueue {1, 3}
and store 1 + 5 = 6 in pos. In (S-3), transit from
s = 11 to t = B[11] + key[6] = 12 by key[6] = ‘i’
and store 12 in s, 6+1 = 7 in pos. After that, proceed
to (S-4) because of B[12] = −7 is the negative value.

In (S-4), as to {1, 3}, compare key+1 = “cadem”
and T + (−B[3]) = “cadem”. In this case both are
equal and queue is empty, then proceed to (S-5). In (S-
5), compare key + 7 = “c” and T + (−B[12]) = “c”,
in this case both are equal. Thus, searching “aca-
demic” is success.

3.3 Insertion Algorithms
The insert processing is performed when the search
processing is fail.

A case of fail on DS-tree in (S-3), call InsLeaf(s,
t, key, pos) to create a leaf for key[3]. This function,
if a new leaf t which is a child of s by key[pos] is an
empty element, create a leaf on t. Otherwise, update
B[s] or B[s′] and create a leaf on B[s] + key[pos][5].

A case of fail on the TAIL in (S-4) and (S-5),
call InsPrefixNode(t, key, pos, T + (−B[t]), n) to
update the prefix or the suffix. Where n is the min-
imum comparison position where key + pos differs
from T + (−B[t]).

The insert processing utilizes following variables
and functions.

tailPos: A global variable which indicates the minimum
index of available entries of TAIL.

L: The set of transitions.
NewBase(L): Return to a BASE value to which all ele-

ment of L can transit used E-Link.
InsNode(x): x is deleted from E-Link in order to s is made

usable on DS-tree. And, update S-Link.
DelNode(x): x is inserted to E-Link in order to s is deleted

from DS-tree. And, update S-Link.
CreateLeaf(s, t, suffix): Call InsNode(t) and store s in

C[t]. Store −tailPos in B[t] and a suffix suffix is
stored from T [tailPos].

RenewalCheck(new, old): As to the children of new ex-
cept a prefix node, the CHECK value old is updated
to new used S-Link.

InsPrefixNode is presented in Fig.8. This func-
tion is called the case of updating prefix or suffix.

In the first case, determine the BASE value to
which {key[pos + n], tail[n], PCODE} can transit,
and create a prefix node p which shows prefix tail of
length n. Then create a leaf t of s by key[pos+n] and
a child t′ of s by tail[n]. And update a prefix pp of t′

which shows prefix tail + n + 1.

Function: InsPrefixNode(s, key, pos, tail, n)
Step(P-1): Initialization

Store B[s] in base which is a old BASE value of s.
Set L to {key[pos + n], tail[n]}.

Step(P-2): Definition of a prefix node of s
If n is equal to 0, store NewBase(L) in B[s] and
proceed (P-3). Otherwise, store NewBase(L ∪
{PCODE}) in B[s] and B[s] + PCODE in p. Call
InsNode(p) and S[s] is set as a negative value. A
prefix tail of length n is stored from T [tailPos] and
store −tailPos in B[p], −n in C[p].

Step(P-3): Definition of a node about tail
Store B[s] + tail[n] in t′. Call InsNode(t′) and store
s in C[t′]. If base is the negative value, proceed to
(P-4), otherwise proceed to (P-5).

Step(P-4): Updating of the B[t′](t′ is a leaf)
Store base−n in B[t′]. If n is more than 0, store base
in B[p]. Proceed to (P-6).

Step(P-5): Updating of the B[t′](t′ is not a leaf)
Store base in B[t′] and call RenewalCheck(t′, s).
Store base + PCODE in pp which a prefix node of
t′. If n is not equal to 0, store B[pp] in B[p] and −n
in C[p]. If n+1 is equal to −C[pp], call DelNode(pp)
and S[t′] is set as a positive value, otherwise advance
B[pp] by −(n + 1) and C[pp] by n + 1.

Step(P-6): Definition of a leaf about key
Store B[s] + key[pos + n] in t and call CreateLeaf(s,
t, key + (pos + n + 1)).

Fig. 8: Algorithm of InsPrefixNode

In the second case, if n is equal to 0, create a leaf
t of s by key[pos]. As to tail, create a child t′ of s by
tail[0] and update B[t′] to updating tail. If n is not
equal to 0, need to create a prefix node p.

For example, insertion “account” in Fig.6 is ex-
plained. Searching “account” is fail on the TAIL and
call InsPrefixNode(11, “account”, 1, “cadem”, 1). In-
sPrefixNode processes in the following order, (P-1),
(P-2), (P-3), (P-5), (P-6). In (P-2), call NewBase({‘c’,
‘a’, PCODE}) and create a prefix node 6, and update
a prefix node 3 in (P-5). In (P-6), create a leaf which
shows “ount” on 9. DS-tree and the double-array after
insertion processing are shown in Fig.9.

3.4 A Deletion Algorithm
The delete processing is performed when the search
processing is success. Delete is presented in Fig.10.
This function consists of deletion of key and main-
taining a form of DS-tree. The first processing is (D-
2), the second processing is (D-3) to (D-7). The dele-
tion processing utilizes following functions.

leaf: A leaf which shows a delete key.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 474

ount

l

he

le

1

l

c
b

ac

a

a

c

c

11

9

13
4

5

14

2

6

c

e
dem

i

7 8

12

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BASE 10 -9 -3 -10 -13 -1 3 -6 -18 6 -7 2 -16

CHECK 14 -1 -3 10 10 -1 11 7 11 1 7 1 10
SIBLING 1 4 8 5 14 7 -9 12 6 -13 3 -11 2

1 3 6 7 9 10 13 16 18
TAIL c dem c a le he l ount

Fig. 9: Examples of DS-tree and the double-array
used the prefix node for {K, “account”}.

tail: A prefix or a suffix.
GetLabels(s): Return a set of transitions from s used S-

Link.
TransNode(s, newBase, oldBase, L): In connection

with the BASE value of s is updated oldBase to
newBase, all children of s are moved. If the child of
s has children, call RenewalCheck.

For example, deletion “account” in Fig.9 is ex-
plained. Searching “account” is success on a leaf 9
and call Delete(9). In Delete, it processes in the fol-
lowing order, (D-1), (D-2), (D-3), (D-5), (D-6), (D-
7). In (D-2), delete a leaf 9. In (D-3), set “ca” to tail
and delete a prefix node 6. In (D-5), tail is updated
“cadem”, and update a prefix shown a prefix 3 to “ca-
dem” in (D-6). In (D-7), delete a node 7. DS-tree and
the double-array after deletion processing are return
to Fig.6 and Fig.4(a) respectively.

4 Experimental Observations
We conducted simulation experiments to evaluate the
proposed methods. Where DA, DA+T and DA+TS
methods are the double-array and DA method does
not use TAIL[5], DA+T and DA+TS methods used
TAIL[5], DA+TS method used SIBLING. In addition,
P method is Patricia[1]. In this simulation, we used
two set of key which are randomly selected 200,000
English words called S1e and 5,000,000 URI called
S1u. The average lengths of key are 10.47 and 58.52
bytes respectively.

Function: Delete(leaf)
Step(D-1): Initialization

Store C[leaf] in s and S[leaf] in t.
Step(D-2): Deletion of key

Call DelNode(leaf) and store Abs(S[t]) in sibling
which is a sibling of t. If s is equal to root of DS-tree
or there is no different child from t, this process is
success, otherwise proceed to (D-3). The second case
can be judged that, if s has a prefix node, whether
Abs(S[sibling]) is equal to t, otherwise sibling is
equal to t.

Step(D-3): Updating tail
If s has a prefix node pp, set prefix T + (−B[pp])
to tail, call DelNode(pp) and S[s] is set as a positive
value. A transition of s to t is added to tail. If t has
not a prefix node, proceed to (D-4), otherwise proceed
to (D-5).

Step(D-4): Addition suffix to tail
A suffix T + (−B[t]) is added to tail and store
−tailPos in B[s]. Proceed to (D-7).

Step(D-5): Addition prefix to tail
If t has a prefix node p, T +(−B[p]) is added to tail.
Store −tailPos in B[p], a negative value which is
length of tail in C[p] and S[s] is set as a negative
value. Store B[t] in B[s] and call RenewalCheck(s,
t). Otherwise proceed to (D-6).

Step(D-6): Definition of a prefix node
Store B[s] + PCODE in p. If p is an empty element,
store B[t] in B[s] and call RenewalCheck(s, t). Oth-
erwise, set to L by GetLabels(t), store NewBase(L ∪
{PCODE}) in B[s] and call TransNode(s, B[s], B[t],
L). Store B[s] + PCODE in p, −tailPos in B[p] and
a negative value which is length of tail in C[p].

Step(D-7): Deletion of t
Call DelNode(t) and tail is stored from T [tailPos].

Fig. 10: Algorithm of Delete

Simulation results of the searching processing are
shown in Tab.1. Tab.1 shows that the average of
searching times on DS-tree and on TAIL. In addition,
shows the average of search lengths on DS-tree and
on TAIL.

From the simulation results, the searching speed
of the proposed method is faster than the original
methods for S1u, about 1.16 to 1.32 times. On the
other hand, later than DA+T method for S1e, about
0.78 to 0.90 time. Notice that the averages of search
length on DS-tree are reduced by the proposed method
for both set. However, the searching speed on DS-
tree of proposed method is later than DA and DA+T
methods. This indicate that a processing of enqueue
in (S-2) is taken time.

As to the updating processing, the initial states

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 475

Tab. 1: The simulation results of search processing.
searching time(µs) search length

On DS-tree On TAIL Total On DS-tree On TAIL
English

DA 0.77 0.00 0.77 10.59 0.00
DA+T 0.54 0.06 0.60 8.08 2.57

P 1.29 0.15 1.44 24.61 10.47
Proposed 0.65 0.12 0.76 7.05 3.60
URI

DA 4.03 0.00 4.03 58.48 0.00
DA+T 3.65 0.17 3.83 48.67 9.82

P 3.87 0.49 4.36 52.21 58.47
Proposed 2.44 0.87 3.31 15.97 42.52

are set to 20,000 words for S1e and 500,000 URI for
S1u at random, and insertion and deletion processing
used S2e and S2u. Where S2e and S2u are randomly
selected 200,000 words from S1e and 5,000,000 URI
from S1u respectively. The number of insertion keys
and deletion keys are almost equal and the number
of keys on search methods are always almost equal
during the updating processing.

This simulation results are shown in Tab.2. Tab.2
shows that the average of insertion and deletion
times. In addition, shows the average of search length
for the children searches which are GetLabels, Re-
newalCheck and the judgment whether parent has
only one child.

Moreover, shows that the number of nodes on DS-
tree, used elements on TAIL and the used space. In
addition, as to the proposed method for S2e and S2u,
the number of the prefix nodes are 2,592 and 172,708,
the average of prefix are 2.01 and 8.02 respectively.
Where an used space of the P method is computed
from a position of key, two information of child, an
index on TAIL of key and TAIL.

From the simulation result, the insertion speed of
the proposed method is faster than the original meth-
ods for S2u, about 1.28 to 2.64 times. And for S2e,
equivalent to the insertion speeds of the original meth-
ods. This indicates that the inserted number of nodes
on DS-tree is reduced for the prefix node, about 1.08
to 3.85 times for S2e and 2.27 to 9.96 times for S2u.
And, the average of search length for children search
is reduced of SIBLING.

The deletion speed of the proposed method is as
well or faster than the original methods. This indi-
cates that the number of deleted nodes on DS-tree is
reduced for the prefix node and the complexity of the
judgment whether parent has only one child is reduced
for SIBLING.

The used space of the proposed method is larger
than the DA+T method for S2e about 1.30 times. This
indicates is using SIBLING. However, the proposed
method is well or smaller than other methods for S2e,

Tab. 2: The simulation results of updating processing.
insertion deletion search length nodes tail used space
time(µs) time(µs) of children (1,000) (1,000) (MB)

English
DA 7.60 9.60 950.60 125.6 0.0 1.01

DA+T 4.48 5.68 284.40 35.2 90.3 0.37
DA+TS 4.46 4.11 33.42 35.2 90.3 0.51

P 4.86 4.30 20.2 1,279.3 1.70
Proposed 4.42 4.31 25.20 32.6 90.3 0.48
URI

DA 13.421 26.73 2,229.59 9,519.3 0.0 76.16
DA+T 16.502 13.18 659.41 2,168.4 7,350.9 24.70

DA+TS 15.721 7.64 40.87 2,168.4 7,350.9 33.37
P 7.987 6.67 501.1 178,341.3 186.36

Proposed 6.234 6.60 7.84 955.4 7,350.9 18.82

about 0.94 to 0.28 times. Especially for S2u, the
proposed method is smaller than the original method,
about 0.10 to 0.76 times. This indicates that the num-
ber of nodes on DS-tree is reduced for the prefix node.

Simulation results prove that the proposed
method is more efficient.

5 Conclusion
This paper proposed the search method which used
the digital search tree compressed all one-way
branches used the double-array structure, and the
searching and updating algorithms are also shown. In
addition, the space and time efficiency of the proposed
method is shown from the simulation result.

As a future research work, we plan to implement
the proposed method on an actual system to verify
practicality and evaluate applicability.

References:

[1] D. R. Morrison, “Patricia practical algorithm
to retrieve information coded in alphanumeric,”
Journal of the ACM, vol. 15, pp. 514–534, 1968.

[2] R. Sedgewick, Algorithms in C: Fundamentals,
Data Structures, Sorting, Searching. Addison-
Wesley Pub, 1997.

[3] Y. Nakamura and H. Mochizuki, “Fast computa-
tion of updating method of a dictionary for com-
pression digital search tree,” Information Process-
ing Society of Japan, vol. 47, no. SIG 13 (TOD
31), pp. 16–27, 2006.

[4] S. Yata, M. Oono, K. Morita, M. Fuketa, T. Yoshi-
nari, and J. Aoe, “A deletion method for minimal
prefix double-array without increasing empty ele-
ments,” Information Processing Society of Japan,
vol. 47, no. 6, pp. 1894–1902, 2006.

[5] J. Aoe, “An efficient digital search algorithm
by using a double-array structure,” IEEE Trans.
Knowledge and Data Engineering, vol. 15, no. 9,
pp. 1066–1077, 1989.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 476

