
Enable Collaborative Learning: An Improved E-Learning Social
Network Exploiting Approach

Zhi-Mei Wang
Wenzhou Vocational & Technical College

Department of Computer
Wenzhou,325035, Zhejiang

China
amayever@gmail.com

Ling-Ning Li
Shanghai JiaoTong University

Department of Computer Science and Engineering
No.1954, HuaShan Road, 200030, Shanghai

China
fyang@sjtu.edu.cn

Abstract: In this paper we propose an improved E-Learning Social Network Exploiting Approach based on Heb-
bian Learning Law, which can automatically group distributed e-learners with similar interests and make proper
recommendations, which can finally enhance the collaborative learning among similar e-learners. Through simi-
larity discovery, trust weights update and potential neighbors adjustment, the algorithm implements an automatic-
adapted trust relationship with gradually enhanced satisfactions. It avoids dicult design work required for user
preference representation or user similarity calculation. Hence it is suitable for open and distributed e-learning
environments. Experimental results have shown that the algorithm has preferable prediction accuracy and user
satisfaction. In addition, we achieve an improvement on both satisfaction and scalability.

Key–Words: Collaborative learning, Social network, E-learning, Self-organizing Community

1 Introduction
E-Learning which breaks the traditional classroom-
based learning mode enables distributed e-learners to
access various learning resources much more conve-
nient and flexible. However, it also brings disadvan-
tages due to distributed learning environment. Thus,
how to provide personalized learning content is of
high priority for e-learning applications.

An effective way is to group learners with simi-
lar interests into the same community [1]. Through
strengthening connections and inspiring communica-
tions among the learners, learning of the whole com-
munity will get promotion. To achieve a better per-
formance and a higher scalability, the organizational
structure of the community would better be both self-
organizing and adaptive [2].

Based on the investigation on the behavior of real
students, we found out that learners have strength-
ened trusts if they always share common evaluations
or needs of learning re- sources, which is very similar
with the Hebbian Learning theory proposed by Hebb
D.O. based on his observation on bio-systems [3].

In this paper, we present an improved E-Learner
communities self-organizing algorithm relying on the
earlier work by F. Yang [4]. The algorithm uses cor-
responding feedback to adjust relationships between
learners, aiming to find similar learners and provide
facilities in their collaboration. Experimental results
have shown that the algorithm has preferable predic-

tion accuracy and user satisfaction. In addition, we
achieve an improvement on both satisfaction and scal-
ability.

2 Framework of Collaborative
Agent

2.1 Agent Feature
Each agent in the community holds a set of resources,
which are rated by the user. A bigger rating number
means a better evaluation on one resource. Each agent
can only be aware of its neighbors, while other agents
are out of sight and can not be communicated with
directly. No central agent or server exists, so it does
not matter any agent breaks down or quits from the
community. Hence, it forms a pure P2P environment.

We defined TNLi to be the trusted neighbor list
of user ui, storing the identification information of
ui’s trusted neighbors and the corresponding trust
weights. Number of an agent’s neighbors is limited,
since one can not be acquainted with everybody in the
real society. We define MON (Maximum Of Neigh-
bors)to signify this limit.

2.2 Query Behavior
During the operation of the system, a particular
learner could be given lots of candidate resources for

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 311

reading. He could then send out a request to his
trusted neighbors asking for their advices. Such kind
of request will be referred to ”query”.

If the neighbor nds that the queried resource has
not been evaluated, it will then forward this query to
its neighboring agents. The depth that a recommen-
dation query will be forwarded is controlled by TTL
(time-to-live), to avoid unlimited recurrence. Every
time a query has been forwarded, the TTL will be de-
creased by one. Once the TTL reaches zero or the
evaluation on the queried resource has been found, the
forward process will cease and the corresponding re-
sult will be sent back along the query path.

3 Self-Organizing Weight Update
Algorithm

3.1 Trust Weight Update algorithm
On initialization, each agent will connect to several
other agents randomly. These agents will be set as the
original trusted neighbors of the agent and assigned a
certain trust weight from 0 to 0.1. The topology of the
community can be illustrated as Fig. 1.

Figure 1: Structure of Trusted Neighbor List

Once an agent have a query to send out, it will
choose the candidates based on M Roulette-Wheel
Rule. That is, each neighbor gets a probability to be
judged chosen or not. The probability is M multiplied
by the ratio of the neighbor’s trust weight to the sum
of all the weights, and it should not be greater than
100%.

∗pi
j =

wi,j∑
j

wi,j
·M, pi

j =

{ ∗pi
j if ∗pi

j ≤ 1
1 if ∗pi

j > 1
(1)

The math. expectation value of the number of the
chosen neighbors can be computed as:

E =
∑

j

1 · pi
j ≤

∑

j

∗pi
j = M (2)

Figure 2: Updating of Trust Weights Among Neigh-
bors

When ui sends a query on rk to t neighbors,ne1,
ne2,· · ·,net, the query spreads along t pathways and
will get t ratings v1

k, v2
k,· · ·,vt

k back before TTL de-
creases to 0. We compute the recommendation rating
on rk as:

∗vi
k =

t∑

j=1

wi,j · vj
k∑t

j=1 wi,j
=

∑t
j=1 wi,j · vj

k∑t
j=1 wi,j

(3)

∗vi
k shows the degree of the recommendation

from others, by which users can make a determina-
tion whether the resource rk is worth reading or not.
While the rating vj

k denotes an individual view from
the neighbor nej . After reading the resource rk, user
ui makes an rating vi

k himself. The difference between
vj
k and vi

k is the key to update trust weights between
users.

Based on the Hebbian learning law, we define the
trust weight increment in the recommendation net-
work ∆wi,j by Equation 4

∆wi,j = η · vj
kv

i
k (4)

where η is the learning rate.
We hope a great difference between vj

k and vi
k

makes wi,j decrease while a little difference makes
it increase. So a threshold T1 is set to determine the
update direction.

κ =

{
1 if |vj

k − vi
k| ≤ T1

−1 if |vj
k − vi

k| > T1
(5)

If κ > 0, we say ui get a positive response. At the
same time, greater difference should lead to more de-
crease, and less difference should lead to more in-
crease. So h is defined to emphasize these differences.

h = 1 + |2|vj
k − vi

k| − 1| (6)

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 312

Besides, if two users have similar ratings in the
higher interval or lower interval at [0,1], that means
they both specially ”like” or ”dislike” this resource.
It makes sense to strengthen the connection between
these two users. So Equation 5 should be modified as:

κ =

{
1 + |vj

k + vi
k − 1| if |vj

k − vi
k| ≤ T1

−1 if |vj
k − vi

k| > T1
(7)

The learning rate should include the two factors
above, besides, a pre-defined parameter β is need to
control the overall rate. Hence,

η = β · κ · h (8)

The updated weights could then be calculated
through Equation 9.

wi,j = wi,j + ∆wi,j (9)

3.2 Potential Neighbor Structure Adaption

In order to speed the community organization pro-
cess, we add a Potential Neighbor List (PNL) to store
the neighbors with similar interests but without direct
connections.

If a long query pathway (length > 1) returns a
similar rating with the current user, we can deduce the
end user ue in the pathway is qualied for a potential
neighbor. The strategy of management for the PNL is
as follows:

• If ue ∈ PNLi, then update its trust weight wi,e:

wi,e = wi,e + ∆wi,e, (10)

where ∆wi,e is calculated by Equation 4.

• If ue /∈ PNLi and PNLi is not full, insert
ue into PNLi and calculate the trust weight as
shown in Equation 11.

wi,e = ∆wi,e (11)

• If ue /∈ PNLi and PNLi is full, calculate wi,e

by Equation 11, and check if there exists any po-
tential neighbor nel with a lower trust weight
than wi,e. If there is, insert ue into PNLi and
delete nel. Otherwise, just ignore it.

After each update of the trust weight (in TNL as
well as in PNL), check whether there exists any user
uk in PNLi with the highest trust weight wmax

k in
PNLi . If there is any such user, insert it into the
trusted neighbor set TNLi if the list is not full. Other-
wise, check whether there exists any user with lowest
trust weight wmin

k in TNLi and lower than wmax
k . If

there is any such user, switch it with user uk.
The update strategy is shown in Fig. 2, in contrast

with Fig. 1.

4 Experiments and Evaluations

We define the term ”satisfaction” as a main measure-
ment of performances achieved by agents’ behaviors.
Each positive recommendation should lead to increas-
ing of the receiver’s satisfaction, otherwise, to de-
creasing.

So the satisfaction is related to the trust weight in-
crement. In order to limit the satisfaction from -1 to 1
and create a nonlinear convex curve due to the princi-
ple of diminishing marginal utility, the satisfaction is
calculated as:

∆∗wi,j = ∆∗wi,j + η · ∗vi
kv

i
k, (12)

S = 2arctan(ρ ·∆∗wi,j)/π (13)

where ρ is set to control the rate of the increment
and ∆∗wi,j is initialized to be 0.

The Hebbian Learning algorithm implemented by
Yang [4] was used as a benchmark in contrast with
the improved algorithm specified in this paper. The
former was referred to ”Traditional H. L.” while the
latter to ”Improved H. L.”.

As the total behaviors of the learners increase,
the average satisfaction of the community climbs as
illustrated in Fig.3 with 500 users involved. After
5000 behaviors performed, the performance of the Im-
proved H. L. will exceed the Traditional H. L., which
proves its effectiveness in satisfying the recommenda-
tion need of learners.

0 5000 10000 15000 20000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total Number of Behaviors

S
a

tis
fa

ct
io

n

Improved H. L.
Traditional H. L.

1

Figure 3: Comparison of Satisfaction between Im-
proved and Traditional Hebbian Learning Laws

Since each user only sends the query to the users
selected, Hebbian Learning algorithm has a much
lower calculation complexity than the memory based
recommendation algorithm such as the Item-based
Collaborative Filtering [5],which always has a time

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 313

0 5000 10000 15000 20000
0

1

2

3

4

5

6

7

8

9
x 10

4

Total Users

T
o

ta
l n

u
m

b
e

r
o

f
b

e
h

a
vi

o
rs

Improved H. L.
Fitting Curve
Traditional H. L.
Fitting Curve

Figure 4: Scalability of the Self-organizing Algorithm

complexity of Ω(n2). The Fig.4 shows that the be-
haviors required by the Hebbian Learning algorithm
increased almost linearly in relation to the number of
users. In addition, the Improved H. L. achieves a little
better performance than the Traditional H. L.

5 Conclusion

This paper has introduced a novel method to find and
organize similar learners in an E-Learning commu-
nity. This method is based on the Hebbian Learn-
ing law, and takes improvements relying on the earlier
work by Dr. Yang [4].

The algorithm presented in this paper avoids
dicult design work required for user preference rep-
resentation or user similarity calculation, while reflect
user preferences accurately. In addition, because the
community is organized based on P2P communication
and local interaction, it is suitable to work in open and
distributed environments.

In our future work, we would research on how
to enable agents to reason from common sense
knowledge-base based on the Ontology theory, which
make them more smart to recommend resources to
users intelligently and automatically.

References:

[1] R. Shen, F. Yang, and P. Han, A dynamic
self-organizing e-learner communities with im-
proved multi-agent matchmaking algorithm. the
16th Australian Joint Conference on Artificial
Intelligence 2003, pp. 590–600.

[2] P. Turner and N. Jennings, Improving the scal-
ability of multi-agent systems. the First Interna-

tional Workshop on Infrastructure for Scalable
Multi-Agent Systems 2000, pp. 246–262.

[3] D. O. Hebb, The Organization of Behaviour
1949.

[4] F. Yang, Analysis, Design and Implementation
of Personalized Recommendation Algorithms
Supporting Self-organized Communities. PhD
thesis 2005.

[5] B. Sarwar, G. Karypis, J. Konstan, and
J. Reidl, Item-based collaborative filtering rec-
ommendation algorithms. the 10th international
conference on World Wide Web 2001, pp. 285–
295.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 314

