
A Hierarchy of Imperative Languages for the
Feasible Classes DTIMEF(nk) and for the
Superexponential Classes DTIMEF(kn)

Salvatore Caporaso
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
caporaso@di.uniba.it

Emanuele Covino
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
covino@di.uniba.it

Paolo Gissi
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
gissi@di.uniba.it

Giovanni Pani
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
pani@di.uniba.it

Abstract: An imperative programming language is defined by closure of a free word-algebra of de/con-structors
under two new operators (simultaneous safe recurrence and constructive diagonalization). By assigning ordinals
to its programs a transfinite hierarchy of imperative languages is introduced which singles-out the feasible classes
DTIMEF(nk) and the superexponential classes DTIMEF(kn).

Key–Words: Implicit computational complexity, Computational complexity, Elementary functions, Superexponen-
tial classes

1 Statement of the result.

Assume defined a scheme of inessential substitu-
tion (isbst), such that classes like DTIMEF(nk) are
closed under this scheme, together with a scheme of
safe recursion (safe in the sense of [1, 14]) Let us say
that f is defined by constructive diagonalization in the
enumerating function e if we have f(n) = {e(n)}(n),
where {m} is Kleene’s notation for the function coded
by m. Define a hierarchy Tα by
T1 is a characterization of DTIMEF(n);
Tα+1 is the closure under isbst of the class of all
functions obtained by at most one application of (our)
safe recurrence scheme to functions in Tα;
Tλ is the closure under isbst of the class of all
functions obtained by at most one application of con-
structive diagonalization in a given enumerator e ∈
Tλ1 such that {e(n)} ∈ Tλn .
We then have (writing clps(α, m) for the result of re-
placing ω by m in Cantor normal form (CNF) for α)

DTIMEF(nclps(α,n)) ⊆ Tα

⊆ DTIMEF((n + 4)clps(α,n+4)).
(1)

Moreover, Tk = DTIMEF(nk) for every finite k. For
example (c+1n stands for n

cn)

DTIMEF(nn) ⊆ Tω ⊆ DTIMEF((n + 4)n+4);⋃
β<ω Tβ = PTIMEF;

DTIMEF(kn) ⊆ ⋃
β<ωk

Tβ ⊆ DTIMEF(k(n + 4));⋃
β<ε0 Tβ = E .

Under a more heavy syntax, the spread 4 in (1) can be
reduced to 1 (see Note 17).

2 Diagonalization and other defini-
tion schemes

a, b, a1, . . . are digits of the ternary alphabet T =
{0, 1, 2} and p, . . . , s, . . . , w, . . . are numerals over T;
ε is the empty word. u, w, u1, . . . are variables defined
on T+. We denote by x, y, z variables previously used
as, respectively, auxiliary variables, parameters, re-
cursion variables. This convention is tantamount to
the use of a semicolon (z;x, y) to separate safe and
unsafe arguments by Simmons [14] and Bellantoni &

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 315

Cook [?]). When we write f(u1, . . . , un) we always
assume that some of the indicated variables may be
absent.

Definition 1 Given a word s in which n zeroes oc-
cur, (s)i (1 ≤ i ≤ n + 1) is the i-th rightmost
word (possibly empty) in the alphabet {1, 2} which
occurs between two zeroes of s (0 replaced by ε when
i = 1, n + 1); if i > n + 1 then (s)i does not exist
(cf. Schwichtenberg [13] and Sect. 6 for this use of
ternary words to represent tuples). Given i ≥ 0 and
a = 1, 2,

1. the constructor ca
i (s) adds a digit a at the right

of (s)i;

2. the destructor di(s) erases the right-most digit of
(s)i if any;

all these constructors and destructors leave s un-
changed if (s)i doesn’t exist;

3. the construct casei[f, g, h](s) returns f(s) (re-
spectively g(s)) if the rightmost digit of (s)i is 1
(respectively 2); it returns h(s) if (s)i does not
exist or is ε.

For example d2(010) = d2(00) = 00; d1(1) =
ε; c1

1(0) = 01.

Definition 2 f = sr(g, h) is defined by (this pa-
per’s) safe recursion in the basis function g(x, y) and
in the step function h(x, y, z) if for all s, t, r we have{

f(s, t, ε) = g(s, t)
f(s, t, ra) = h(f(s, t, r), t, ra).

An iteration is a sr in which parameter and recursion
variable are both absent in the step function.

Definition 3 f = cdiag(e) is defined by (construc-
tive) diagonalization in the enumerator e if for all
s, t, r, we have

f(s, t, r) = {e(r)}(s, t, r).

Definition 4 1. f = asg(s, u, g) is the result of the
assignment of s to variable u in g;

2. f = idtx(g) is the result of the identification of
x as y in g (thus, f(y, z) = g(y, y, z)); similarly,
f = idtz(g) is the result of the identification of
z as y in g (thus, f(x, y) = g(x, y, y)).

3. f = sbst(u, h, g) is defined by substitution in g
and h if it is obtained by substitution of g for u
in h.

An essential point is that identification of z as x is not
allowed and, therefore, the step function cannot as-
sign the recursion variable with the previous value of
the function being defined by safe recursion. (Accord-
ing to Bellantoni&Cook’s terminology, in this way z
keeps safe).

Definition 5 (1) Class T0 is the closure under asg,
idtx, idtz and sbst of ca

i , di, casei;
(2) Class T1 is the closure under asg, idtx,

idtz and sbst of functions obtained by at most one
iteration from functions in T0.

In other words, this class is the indicated closure of all
functions f(x, z) = h|z|(x) for some h ∈ T0.

Definition 6 The number of components #(f) of f ∈
T1 is max{i|di or ca

i or casei occurs in f}.

Example 7 Define (by iteration of c1
0) function g1 ∈

T1 such that g1(x, y) = x1|y|. Define further{
fn+1(s, t, ε) = s
fn+1(s, t, ra) = gn(fn+1(s, t, r), t)

(sr)

gn+1(x, y) = fn+1(x, y, y) (idtz)

By induction one shows that |fn+1(s, ta, rb)| = |s| +
|t|n|r| and, therefore, |gn(ε, ta)| = |t|n. Assume de-
fined a function e ∈ T1 such that e(r) = �g|r|�. By
setting fω :=cdiag(e), we then have

|fω(ε, t, ta)| = g|t|(ε, ta) = |t||t|.

Lemma 8 DTIMEF(n) = T1.

Proof. 1. To show that every function in T1 can be
computed in linear time by a TM with input and out-
put on its first tape, let g ∈ T0 and f(s, t) = g|t|(s)
be given. A TM Mf with m := #(f) + 1 tapes can
be defined which, by input s on tape 1: (a) copies
(s)j (j ≤ m) on tape j+1; (b) computes g in constant
time; (c) after |t| repetitions collates back the contents
of tapes 2, . . . , m + 1 into tape 1.
2. For every m-tapes TM M define in T0 a function
nxtM which uses two components for the part at the
right (read in reverse order) and the part at the left
of the observed symbol of each tape, and the last one
of its 2m + 1 components for the internal state. The
behaviour of M by input s for |t| steps can then be
simulated by a function linsimM (x, z) ∈ T1, de-
fined by iteration of nxtM . Let M by input s on its
first tape stop operating within c|s| steps. Since T1 is
closed under substitution, we may define simM (s) :=
linsimM (s, timesc(s)), where timesc(s) = 1c|s| is
obtained from function g1 of Ex. 7 by assigning ε to x
and by some sbst’s.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 316

3 The hierarchy

Definition 9 We adopt the following assignment of
fundamental sequences to all λ < ε0

λn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n if n ≤ 1 and λ < ω2

ωμn if CNF for λ is ωμ

ωαn if CNF for λ is ωα+1

μ + (ωα)n if CNF for λ is μ + ωα.

Comment. Assignment S of last definition differs
from the traditional standard assignment S∗ (see [11,
p. 78]) at line 1 (adopted to simplify the proof of
Lemma 16 — cf. Case 2 of the induction); and at line
3, where we multiply by n instead of n+1 in order to
cope with the fact that, as we shall see, n nested sr’s
grow like |t|n, not as |t|n+1. The slow hierarchy Gα,
when defined with respect to S (cf. §1.1), is obviously
dominated by the one defined with respect to S∗. On
the other hand the former hierarchy is not collapsing
since the Bachmann property (λn < λn+1 for all λ
and n) keeps holding for S (see [11, Th. 3.6]).

Definition 10 f = isbst(u, h, g) is defined by
inessential substitution in g and h if it is defined by
substitution in g and h and h ∈ T1.

We may now define the following hierarchy of
classes of functions.

Definition 11 (a) Tα+1 (α > 0) is the closure under
asg, idtx, idtz , isbst of the class of all func-
tions obtained by at most one application of sr to Tα;
(b) Tλ is the closure under asg, idtx, idtz ,
isbst of the functions of the form cdiag(e), for
e ∈ Tλ1 , and such that {e(r)} ∈ Tλ|r| .

Notation 12 Bα(n) := max(2, n)clps(α,n)

By induction on α one sees that for all n ≥ 2 we
have Bα(n) = nGα(n).

Theorem 13 1. For all ω ≤ α < ε0 we have
DTIMEF(Bα(n)) ⊆ Tα ⊆DTIMEF(Bα(n + 4)).
2. For all finite k, dtime(nk) = Tk.

Proof. 1. By proof of Lemma 8, there is a function
simM (s, t) ∈ T1 returning the instantaneous descrip-
tion of the TM M after |t| steps. By Lemma 20, for
all α < ε0 we can define in Tα a function gα which
computes in unary Bα(|t|). The first inclusion then
follows by isbst of gα(s) for t in sim.

The second inclusion and part 2. follow by
Lemma 16, in which an interpreter is defined, instead
of mere simulation, in order to handle diagonaliza-
tion.

4 Proofs

4.1 Codes

All expressions introduced throughout this paper
may be thought of as transcriptions of a Pol-
ish prefix language over a united alphabet U =
{0, 1, 2,isbst,sr,cdiag,itrt , . . .}. Codes are
built-up by juxtaposition from the codes for the let-
ters of U, unique parsing being ensured by the arity
associated tacitly with each such letter.

Definition 14 The code �L� for the i-th letter L
of U is 2i+11. Let us write 〈E1, . . . , En〉 for
�E1� . . . �En�. If the arity of L ∈ U is n then
〈L, E1, . . . , En〉 codes the expression LE1 . . . En.

Example 15 If f(x, z) ∈ T1 is the |z|-th iterate of
function e ∈ T0,then its code is 〈itrt, e〉. The code
for functions gn+1 of Ex.7 is 〈idtz, 〈sr, x, gn〉〉,
where �g1� = 〈idtz, 〈itrt,c1

0〉〉.

4.2 Simulation by TM’s

Lemma 16 For all α ≥ ω we have
Tα ⊆DTIMEF(Bα(n + 4)); for all finite m,
Tm ⊆DTIMEF(Bm(n)).

Proof. We first associate each integer d with an inter-
preter INTd. By input �f �, s, t, r it returns f(s, t, r)
provided that the following d-condition holds: (a)
|s| + |t| + |r| ≤ d or (b) no cdiag occurs in f and
#(g) ≤ d, for each g ∈ T1 used in the construction of
f .

When the d-condition holds, since by Def. 5 the
number of zeroes doesn’t increase during the compu-
tation of f , the number of tapes needed to store the
parts of the arguments which can be modified by f in
a number of tapes which depends only on d. In the fi-
nal part of this proof, we will reduce the family INTd

to a single interpreter using only two tapes.
Definition of the interpreter We have to avoid the
waste of time resulting from moving back and forth
the value of the function being recursed upon from the
storage which are reserved to the data to that contain-
ing the current results. To this purpose, the interpreter
INT d (see Fig. 1) uses the following stacks:
(a) T x, T y, T z , to store the values of x, y, z during the
computation; T x consists of d tapes, one for each of
the modifiable parts of the value assigned to x;
(b) T u, to store the value of the principal variable of
the current enumeration or recursion;
(c) Tf , to store (the codes for) some sub-functions of
f ;
the initial contents of T x, T y, T z, Tf are, respectively,

the input values s, t, r, and �f �; T u is initially empty.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 317

At the end of the computation INT collates the com-
ponents of the result into the first of tapes T x.

INTd repeats, until Tf is not empty, the following
cycle
- it pops a function k from the top of Tf , and un-nests
the outermost sub-function j of k;
- according to the form of j, it carries-out a different
action on the stacks;
- if the form of j is itrt(g) with g ∈ T0, it calls an
interpreter ITRT for T1 which simulates g on T x for
|t| times, where t is the top record of T y;
- in all other cases, it pushes into Tf an information of
the form jMRKk, where MRK is a mark informing
about the outermost scheme used to define j.
Time complexity We first show that for all f, s, t, r
respecting the d-condition f ∈ Tα implies

INT d(�f�, s, t, r) = f(s, t, r)

within time

|s| + |�f�|Bα(|t| + |r| + 1α)

where 1α = 0 if α < ω and 1α = 1 otherwise. The
result follows, since every function f ∈ Tα is then
computed in DTIMEF(Bα(n + 1α)) by the sequence
composition of the constant-time TM writing the code
for f with INTd.

Define m := |s|, n := |t| + |r|; X := �f�; c :=
|X|. We show that, for all f ∈ Tα, INT d moves
within m + cBα(n + 1α) steps from an istantaneous
description of the form

Tf = ZX; T x = s0s; T y = t0t; T z = r0r; T u = q,

to a new istantaneous description of the form

Tf = Z; T x = s0({X}(s, t, r)); T y = t0t;
T z = r0r; T u = q.

Induction on α and on the construction of f . Basis.
α = 1. We have 1α = 0. The complexity of ITRT is
obviously < m + cn.
Step. Case 1. f =sr(g, h). We have α = β + 1; let r
be the word a|r| . . . a1. By the induction on α, INTd

needs time ≤ m + |�g�|Bβ(n + 1α) to produce the
istantaneous description

Tf = ZX RC; T x = s0 g(s, t, a1); T y = t0t;
T z = r0ra1; T u = qr.

If |r| > 1 then INTd puts Tf := Z X RC �h� and
T z := r0ra2a1, and calls itself in order to compute
h and the next value of f . Again by the induction
on α we have that INTd needs time ≤ |g(s, t, a1)| +

|�h�|Bβ(n + 1α) to produce an istantaneous descrip-
tion of the form

Tf = ZX RC; T x = s0 (h(g(s, t, a1), t, a2a1));
T y = t0t; T z = r0ra2a1; T u = qr.

After |r| − 1 simulations of h we obtain the promised
istantaneous description within an overall time

m + |r|max(|�g�|, |�h�|)Bβ(n + 1α) ≤
m + |r|cBβ(n + 1α) ≤ m + cBα(n + 1α),

where, since α ≥ 2, in these evaluations we may
compensate the quadratic amount of time needed to
copy r and its digits with the difference between c and
max(|�g�|, |�h�|).
Case 2. f =cdiag(h) ∈ Tλ. We have h ∈
Tλ1 , 1α = 1, and (recall that λ1 = 1 when λ ≤ ω2)

Bλ1(n+1)·Bλn(n+1) ≤ Bλn+1(n+1) = Bλ(n+1).
(2)

INT d computes h(r), understands from the mark
DG that the result is the code for the function to be
computed, and, accordingly, pushes it into Tf .

To compute h(r) and {h(r)}(s, t, r) the inter-
preter INT d needs, by the induction on α, time
≤ m+ |�h�|Bλ(1)(|r|+1)+ |{h(r)}|Bλ(|r|)(n+1) ≤
(by eq. (2)) m + |�h�|Bλ(n + 1) ≤ m + cBλ(n + 1).

INT (X, s, t, r):=

Tf := X; T x := s; T y := t; T z := r;

while Tf not empty do A := last record(s) of Tf ;

case
A = ISBST (X, g, h) then

X := g h; push g X in Tf

A = X := xthen
copy last record of T x into T X

A = REN(X, Y, h) then
push h in Tf ; copy last record of T X into T Y

A = DIAG(h) then
push DG h into Tf ; copy last record of T x into T u

A = DG then
pop Tf ; pop last record of T x and push it into Tf ;

pop last record from T u and push it into T x

A = SREC(g, h) then
push A RC g into Tf ; copy last record of T z into T u

push last digit of T u into T z

A = SREC(g, h) RC then
if T u = T z then pop Tf ; pop T u; pop T z

else push h into Tf ;

pop last digit of T u and push it into T z

A = ITRT (g)then
call ITRT .

end case; end while.

Fig. 1

Reduction to 2 tapes Let e be an enumerator such
that for all d there is r such that #({e(r)}) > d.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 318

If such an e occurs in the computation of f , then
f(s, t, r) is simulated by a TM INT c(�f �, s, t, r) (c =
|s| + |t| + |r|) which obviously depends on the ar-
guments for f . However, we know from [7] that
a k-tapes TM with time bound T (n) can be simu-
lated by a 2-tapes TM INT in time kT (n) log(T (n)).
Hence we can define a single 2-tapes TM INT which
behaves like the INTc’s. For α ≥ ω, runtime for
INT is T (n) = nBα(n + 1) log(Bα(n + 1)) ≤
nBα(n + 2) log(n + 1) ≤ Bα(n + 4).

Note 17 We see from the proof above that the spread
4 in the statement of last lemma is reduced to 1 if we
have #(g) ≤ d for some d and for all g involved
in the computation of f . This can be obtained by
adding some cumbrous syntactic clauses to Defini-
tions 1 and 3.

4.3 Simulation of TM’s

Lemma 18 Given
(a) a function {p} such that, for a numerical function
F (n), we have |{p}(s, t)| = |s| + F (|t|);
(b) the function h in T1 defined as follows{

h(x, ε) = x
h(x, ya) = 〈idtz, 〈sr, x, {h(x, y)}〉〉

we have that for all t, q: |{h(p, q)}(ε, t)| =
F (|t|)|t||q|.

Example 19 For p1 :=� c1
1
�, we have |{p1}(s, t)| =

|s| + 1. Last lemma (for F (n) = 1)

says that |{h(p1, q)}(ε, t)| = |t||q|. Hence
cdiag(asg(p1, x, h)) is the fω of Ex.7, which com-
putes in unary Bω. Define further

{
k(p, ε) = p
k(p, qa) = 〈cdiag, 〈asg, k(p, q), x, h(x, y)〉〉

By last lemma and induction on |q| we may prove
that, if pω codes fω, we have |{k(pω, q)}(ε, t)| =
Bω·|q|(|t|). Hence, cdiag(k(pω, y)) computes in
unary Bω2 .
Notice that all these enumerators are obtained by a
safe recursion which adds at each step a constant in-
formation to its previous value, and, therefore, they
belong to T1. A uniform way to build codes of func-
tions {pα} computing in unary Bα for every α ≤ ωω

can be defined similarly.

Proof of Lemma 18. Note that the first occurrence of x
in “〈idtz, 〈sr, x, {h(x, y)}〉〉” is the code for a vari-
able, while the second is an argument (cf. Ex.15).

Function h(p, q) yields the codes for q nestings of
idtz’s and sr’s over {p}. We show by induction on
|q| that we have

|{h(p, q)}(s, t)| = |s| + F (|t|)|t||q|. (3)

Basis. q = ε. We have

|{h(p, ε)}(s, t)| = |{p}(s, t)|
by the definition of h

= |s| + F (|t|)|t|0
by the hypothesis on {p}.

Step. Define e :=sr(x, {h(p, q)}). We show by in-
duction on |r| that we have

|e(s, t, r)| = |s| + F (|t|)|t||q||r|. (4)

|e(s, t, rb)| = |{h(p, q)}(e(s, t, r), t)|
by definition of e

= |e(s, t, r)| + F (|t|)|t||q|
by (3), that is by the induction on q

= |s| + F (|t|)|t||q||r| + |F (|t|)|t||q|
by (4), that is by the induction on |r|

= |s| + F (|t|)|t||q|(|r| + 1).

The result follows from (4) since we have

|{h(p, qa)}(s, t)| = |e(s, t, t)| = |s| + F (|t|)|t||q|+1.

Lemma 20 1. For all α < ε0 there exists gα ∈ Tα

such that |gα(s)| = Bα(|s|).

2. Every TM whose runtime is bounded above by
Bα can be simulated in Tα.

Proof. 1. Case 1. α = β + 1. Define gα =
{h(�gβ�, 1)}, where gβ is granted by the induction
and h is given by last lemma.
Case 2. α = ωβ . Define in Tβ by isbst eα =
{h(�c1

1
�, gβ(y))}, where gβ ∈ Tβ is given by the in-

duction. The induction and Lemma 18 give

|{eα(s)}(s)| = |s|Bβ(|s|).

Since β ≤ (ωβ)1, we may define
gα(s) :=cdiag(eα) in Tα. By the induction
and last lemma

|gα(s)| = |{eα(s)}(s)| = |s|Bβ(|s|).

The result follows since clps(ωβ, n) = nclps(α,n) im-

plies Bωβ (n) = nBβ(n).
Case 3. α = λ + ωβ (λ ≥ ωβ). Define in Tβ by

isbst eα(s) := {h(�gλ�, gβ(y))}. Since ωβ ≤ α1,

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 319

we may define gα(s) :=cdiag(eα) in Tα . By the
induction and last lemma we have

|{gα(s)}(s)| = Bλ(|s|)|s|Bβ(|s|) = Bλ(|s|)Bωβ (|s|).

The result follows since clps(λ + ωβ, n) =
clps(λ, n) + clps(ωβ, n) implies Bλ+ωβ (n) =
Bλ(n)Bωβ (n).
2. The behaviour of the TM M for Bα(|t|) steps is
returned by linsimM (t, gα(t)). This function is in Tα

since is defined by idtx and by isbst of the func-
tion gα (in Tα, by part 1) inside the function linsim
(in T1, by lemma 1).

5 On the adopted form of predicative
recursion

Our safe recursion may be regarded as a scheme of si-
multaneous safe primitive recursion on (binary) nota-
tions. Following a method dating back to Schwicht-
enberg [13, 1967], let us read all zeroes occurring
in a word s ∈ T∗ as commas and all words over
B := {1, 2} as numbers in binary modified form,
with ε representing 0 (for example read 1100220 as
3, 0, 6, 0). It is then natural to write s in the form �s,
where si is the (s)i of Def. 1. At this point, one may
replace our di,ca

i ,casei with the ordinary de/con-
structors and case on binary notations. Defining
f =sr(g, h) with #(f) = d is then tantamount to
a sequence of functions fi (i ≤ d) defined by simulta-
neous primitive recursion on notations

{
fi(�s,�t, ε) = gi(�s,�t, ε)
fi(�s,�t, za) = hi(f1(�s,�t, z), . . . , fd(�s,�t, z),�t, z).

The distinction between x, y, z keeps the recursion
safe. Separation of the auxiliary variable of an outer
cycle from the variable already used as principal in
an inner cycle is obtained by just using different vari-
ables: by doing so, no bookkeeping of their history
along the construction of f has to be taken.

References:

[1] S.J.Bellantoni and S.Cook, A new recursion-
theoretic characterization of the poly-time func-
tions. Computational Complexity, 2(1992)97-
110.

[2] S. Caporaso, Safe TM’ s, Grzegorczyk classes
and Polytime, Intern. J. Found. Comp.
Sc.,7.3(1996)241-252.

[3] S. Caporaso, M. Zito, N. Galesi, A predicative
and decidable characterization of the polyno-
mial classes of languages Theoretical Comp. Sc.
250(2001)83-99

[4] S. Caporaso, M. Zito, N. Galesi, E. Covino, Syn-
tactic characterization in Lisp of the polynomial
complexity classes and hierarchies. In G. Bon-
giovanni, D.P. Bovet, G. Di Battista (eds) Algo-
rithms and Complexity. LNCS 1203. (Springer,
Berlin, 1997).61-73.

[5] S. Caporaso, E. Covino, A predicative approach
to the classification problem Journal of Func-
tionnal Programming 11.1(2001)95-116.

[6] M. Fairtlough and S.S. Wainer, Hierarchies of
provably recursive functions, in S. Buss (ed.)
Handbook of proof theory. (Elsevier, Amster-
dam 1998).

[7] F.C.Hennie and R.E.Stearns, Two-tape simula-
tion of multi-tapes TM’s. J.ACM 13.4 (1966)
533-546.

[8] D. Leivant, A foundational delineation of com-
putational feasibility. In Proc. of the Sixth IEEE
Conference on Logic in Computer Science.
(IEEE Computer Society Press, 1991, p.2-18).

[9] D. Leivant,Predicative recurrence in finite types,
in A. Nerode and Y. V. Matiyasevich (eds.),
Logical foundations of computer science, LNCS
813(1994), 227-239.

[10] D. Leivant,Stratified functional programs
and computational complexity. In Conference
records of the 20th annual ACM Symposium
on Principle of programming languages. New
York, 1993.

[11] H.E. Rose, Subrecursion: Functions and hierar-
chies (Oxford University Press, Oxford, 1984).

[12] K. Schütte, Proof Theory (Springer, 1977).

[13] H. Schwichtenberg, Eine Klassification der ε0-
rekursiven Funktionen, Zeitschr. math. Logik u.
Grundl. d. Math. 17(1971)61-74.

[14] H. Simmons,The realm of primitive recursion,
Arch.Math. Logic, 27(1988), 177-188.

Proceedings of the 6th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 15-17, 2007 320

