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Abstract: Process integration is of critical importance in achieving increased energy efficiency in industry.  Heat 
Exchanger Network Synthesis (HENS) is one of the most efficient process integration tools to save energy in 
chemical plants. In this work an optimization framework is proposed for the synthesis of HENS, based on a genetic 
algorithm (GA) coupled with a commercial process simulator. The use of a simulator facilitates the formulation of 
rigorous models for different process alternatives, while the genetic algorithm allows the solutions of the complex 
non-convex mathematical problem, involving discrete and continuous decisions. The model uses a promising 
superstructure that includes the most common heat exchanger structures, and optimizes utility costs, the number of 
units and heat exchanger areas simultaneously. Applying the new simulation based approach to the model allowing 
non-isothermal mixing makes it possible to find truly optimal network configurations. The performance of the 
proposed approach is demonstrated using several case studies, and the obtained solutions are compared with those 
available in literature. 
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1 Introduction 
Heat Exchanger Network Synthesis (HENS) 
problems have attracted significant researches due to 
the large saving achievable in terms of energy costs. 
As energy costs continue to increase, industry will 
have greater incentive to apply heat integration as 
broadly as possible in its facilities. The heat 
exchanger network is an arrangement of heat 
exchangers; in which cold & hot process streams and 
hot & cold utility streams interchange energy. The 
purpose of the HEN is to recover energy from the hot 
process streams to heat up cold process streams using 
the least amount of hot and cold utility streams, while 
achieving specified outlet target temperatures of the 
process streams.  
     For the first time [1] defined the heat exchanger 
network design problem in a rigorous manner. They 
proposed minimization of the total cost for designing 
an optimum heat exchanger network. Since then, 
many design algorithms have been proposed which 
can be found in thorough reviews of [2] and [3]. 

Although there have been many publications on the 
design of heat exchanger networks during the past 
four decades, the problem is still open for further 
research. 
     In general, HENS can be solved by either 
sequential or simultaneous approaches. Sequential 
synthesis methods involve partitioning the basic 
problem according to its temperature range and 
decomposing it further into various target sub-
problems, each solved sequentially subject to the 
solution of the prior target. So these approaches often 
lead to suboptimal designs. On the other hand, 
simultaneous methods are concerned with the basic 
HENS problem with little or no decomposition into 
target subproblems. These approaches can 
themselves be classified as either superstructure-
based framework ([4], [5]) or nonsuperstructure-
based framework ([6], [7] and [8]). The model 
presented in this work is based on the superstructure-
based framework. 
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     From the optimization point of view simultaneous 
heat exchanger network synthesis methods are often 
formulated as mixed-integer nonlinear programming 
(MINLP) models, in which binary variables represent 
the existence of heat exchangers and continuous 
variables represent process parameters. Recent work 
by [9] has shown that solving HENS are NP-hard of 
strong sense. This limits the usefulness of 
deterministic methods such as Generalized Benders 
Decomposition (GBD, [10]) and Outer Approx-
imation (OA, [10]), since their computation time 
increases exponentially with problem size. Thus 
stochastic methods such as Simulated Annealing 
(SA, [11]), Tabu Search (TS, [12]) and Genetic 
Algorithms (GA, [6], [13], [14]) are important 
approaches for tackling large-scale problems. Since 
GAs keep track of a population of potential solution, 
thus they are less sensitive to arbitrary initial guesses 
of the solution and therefore, genetic algorithm is 
used as the optimizer of this work. 
     On the other hand the classical synthesis of a 
HEN assumes and keeps all design conditions a 
constant value and the effect of temperature and 
pressure on physical properties of streams is 
neglected. This consideration can achieve solutions 
very far from the point of view of industrial 
application. So there has yet to be a proposal for a 
truly complete formulation of the HENS problems 
without any simplifying assumptions [3]. 
     The objective of this paper is to achieve this goal 
by eliminating the simplifying assumption of the 
superstructure and using a commercial simulator. 
These simulators include a variety of highly efficient 
rigorous thermodynamic models and design models 
that allow the process engineer to evaluate different 
flowsheets and modeling options in an easy way. So 
taking into account the black-box model concept, the 
use of simulators can help to ease the formulation of 
the synthesis problem. 
     Moreover, the new approach used in this work can 
facilitate the incorporation of HENS concepts with 
other aspects of the process synthesis like distillation 
sequences and reactor network synthesis to lead to 
simultaneous synthesis of total process flowsheet. 
 
2 Genetic Algorithm 
Genetic algorithms are among the most widely used 
stochastic search algorithms and represent a 
promising alternative to gradient-based optimization 
techniques for certain classes of problems, e.g., 

optimization problems characterized by mixed 
continuous-discrete variables and discontinuous 
and/or non-convex system spaces ([15]). Empirically 
and to some extent theoretically it has been proven 
that GAs can provide robust search in complex 
spaces even if the objective function is not 
continuous or smooth. So they can be suitable 
candidates to solve large combinatorial optimization 
problems like the HEN synthesis. 
     The genetic code used here is based on the binary 
representation, in which each decision variable is 
encoded as a bit. The strong preference for using 
binary representation of solutions in the genetic 
algorithms is typically derived from the schema 
theory of genetic algorithms, which tries to analyze 
genetic algorithms in terms of their expected schema 
sampling behavior. Furthermore, binary 
representation is a robust and suitable method for 
MINLP problems, since every integer variable in the 
model can be handled efficiently by using just one 
bit.  
     In this work the genetic algorithm includes some 
of the most commonly accepted strategies to improve 
the performance of a basic GA, such as mutation, 
crossover and elitism and the termination criterion of 
the algorithm is based on the satisfaction of the pre-
determined similarity ratio. 
 
3 Creating Structures 
To create different heat exchanger network 
structures, it is necessary to determine the 
frameworks like type of superstructure and the 
relationship between optimizer, user and simulator. 
 
3.1   Superstructure selection 
    Ciric and Floudas ([4]) combined the transship-
ment model of Papoulias and Grossmann for the 
match selection with the NLP model to determine the 
minimum investment cost network into one MINLP 
formulation for a specified minimum temperature 
difference. This method consists of one single stage 
optimization in which all variables are optimized 
simultaneously. The hyperstructure used by the 
authors is shown in Fig. 1. While this hyperstructure 
embeds all different alternative structures, it involves 
more non-linear heat balance constraints and is 
therefore more difficult to solve. 
     At the same time, a stage-wise simplifies     
superstructure formulation has been developed by 
Yee and Grossmann ([5]). This method does not rely 
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on any division into temperature or enthalpy intervals 
and features linear constraints from the following 
assumptions: 

• isothermal mixing,  
• no split stream flowing through more than 

one exchanger 
• utilities at the end of the superstructure 
• no stream bypass 

    The superstructure presented by [5] is shown in 
Fig. 2. At each stage in the superstructure, each hot 
stream is split into the number of cold streams and 
one possible heat exchanger is placed at every 
branch. As shown, utilities are located at the end of 
the superstructure. The number of stages in the 
superstructure can be set for instance to the 
maximum of hot or cold streams. Even though some 
HEN structures cannot be generated by the model, 
[5] illustrated that good HEN structures can be 
obtained. In the present work Yee–Grossmann super-
structure is used as the framework, and due to using a 
robust optimizer coupled with a black box model the 
isothermal assumption of their formulation is 
eliminated to obtain more reliable networks. 
 

 
Fig. 1. The hyperstructure presented by [4] 

 

 
Fig. 2. The superstructure presented by [5] 

 
3.2   Implementing the model 
The commercially available simulators enable the 
detailed economical evaluation of a process 
flowsheet, but the inclusion of the process structure 

in an internal optimization step is not possible 
without varying the structure by hand. So, in the 
architecture used in this work, the user interacts with 
the GA defining the parameters of the algorithm, 
explicit constrains and convergence options, with the 
simulator, to select the mathematical models, and 
with the interphase, to set up the control variables.            
The chromosome used in genetic algorithm consists 
of two part, the first bits corresponds to the binary 
variables, i.e. the existence of a specified heat 
exchanger in the network; if the value of the bit is 
one, this exchanger would be added through the 
ActiveX capability of the simulator to the flowsheet 
and if the value is equal to zero, there would be no 
such exchanger. The remaining part of the 
chromosome corresponds to continuous variables 
which are heat exchanger duties and the split ratio of 
the hot and cold streams. After encoding the 
chromosome, the values are transferred to the 
simulator. The simulation is run and objective 
function is calculated. Then the genetic algorithm 
receives the objective function information and 
through using different operators develops other 
networks. This process continues until the 
termination criterion is satisfied. Then the optimal 
network and its corresponding variables are reported 
to the user. 
     Penalty functions have been used to handle the 
constraints in the model. A large penalty is defined 
for simulations ending with warnings or errors 
(infeasible designs), whereas a smaller penalty was 
used for successful simulations that did not achieve 
the desired specifications (e.g. a desired 
temperature). 
 
Case Studies 
The performance of the algorithm is evaluated with 
several HENS from the literature: two small-scale 
and two mid-scale. The examples are organized 
according to size, such that the smallest problem is 
the first one and the last is the largest problem. 
     The objective is to minimize the annualized cost 
expressed as the sum of the utility costs, fixed 
charges for each heat exchanger and an area-based 
cost for each heat exchanger. All calculations were 
carried out using a P-IV CPU (1.8 GHz) with 1 GB 
RAM. 
 
4.1 Case Study A 
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This example is taken from [16] and involves one hot 
and two cold streams. Its problem data as well as 
exchanger cost equations are presented in Table1. In 
all case studies unites used for T, Fcp, h and Cost are 
K, kW /K, kW/cm^2 and $/kW yr respectively. 
     To solve this example a superstructure with two 
stages is selected and so there would be 4 binary 
variables and 12 continuous variables, but due to 
existence of just one hot stream, the number of 
continuous variables would be decreased to 8. The 
corresponding chromosome length is equal to 74. 
The convergence is achieved in generation number of 
260 by a similarity ratio of 0.95. Fig. 3 shows the 
final network. The numbers shown in this figure and 
other case studies represent the area of heat 
exchanger in square meter. The final network 
consists of two process heat exchanger and one 
cooler and consumes 169 kW cold utility (cooling 
water). This optimal network minimizes the total 
annualized cost to $50561, while the corresponding 
number in the reference paper is $53117. If the 
reported network is simulated by the simulator, the 
annual cost would increase to $53120. It should be 
considered that part of this difference can be caused 
by the approximations used in calculating the average 
heat capacity. 
 
4.2 Case study B 
This is a well known case study taken from [5] and 
involves two cold and two hot streams. Table 2 
shows the problem data as well as exchanger cost 
equations. By selecting the number of stages equal to 
2, the number of binary and continuous variables 
would equal to 8 and 16. The final network is 
presented in Fig. 4. This network consists of four 
process heat exchanger and one cooler. The total 
annual cost is $75890, while the reported annual cost 
in the reference paper is $80274. 
 
4.3 Case study C 
This example is taken from [13] and involves five hot 
and one cold streams. Its problem data as well as 
exchanger cost equations are presented in Table3. As 
it is shown in this table the corresponding 
temperature for the hot utility i.e. steam is 700 
Kelvin, but in steam table there isn’t such saturated 
steam. This problem shows that although in many 
approaches the heat exchanger network synthesis is 
solved just using mathematical models and the 
process insights is neglected, but in practice the 
problem can not be solved just using mathematical 

formulations. Anyway to synthesis this problem it is 
assumed that at first the hot stream is cooled to be 
saturated and in saturation temperature it exchanges 
heat with cold streams. 
If for simplicity the number of stages is assumed to 
be 2, there would be 10 and 30 binary and continuous 
variables. The genetic algorithm converges to total 
annual cost of $375100, while Lewin has reported 
$573205. It is obvious that the comparison between 
these numbers is not logical, since the cold stream C1 
can not be heated to 660 K. The final network with 
corresponding areas of exchangers is presented in 
Fig.5. 
 
4.4 Case study D 
This case study is also taken from [13] and it 
involves five cold and five hot streams. Table 4 
shows the problem data as well as exchanger cost 
equations. By selecting the number of stages equal to 
3, the number of binary and continuous variables 
would equal to 75 and 225. The final network is 
presented in Fig. 6. This network consists of 8 
process heat exchangers and 3 coolers. The total 
annual cost is $44477, while the reported annual cost 
in the reference paper is $43452. There was an 
interesting point in running the code for this case 
study; i.e. after running the genetic algorithm for 
several times no feasible solution obtained, therefore 
a migration operator was used. This result is not far 
from expectation, since it is obvious that the 
efficiency of superstructure-based methods decreases 
by the increase of problem size. For example in this 
case study the number of variables is equal to 300 
and the corresponding chromosome length is 1662 
and migration operator should be used to give the 
solution. 
 

Table 1. Problem data for case study A 
Cost  h Fcp TOUT TIN Stream 

- 2 20 318 423 H1 

- 2 13 393 333 C1 

- 2 12 393 293 C2 

80 1 - 483 483 S1 

20 1 - 288 278 W1 
 

Heat exchanger ($ per year), 8.07004000 a+ ; 
Heat exchanger utils. ($ per year), 8.05604000 a+  
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Fig. 3 The final optimal network of case study A 

 
 

Table 2. Problem data for case study B 

Cost  h Fcp TOUT TIN Stream 

- 0.8 30 333 443 H1 
- 0.8 15 303 423 H2 
- 0.8 20 408 293 C1 
- 0.8 40 413 353 C2 

80 0.2 - 450 450 S1 
20 0.8 - 313 293 W1 

Heat exchanger except heaters ($ per year), 8.07004000 a+  
Heaters ($ per year), 8.05604000 a+  
 
             

 
Fig. 4 The final optimal network of case study B 

 
 

Table 3. Problem data for case study C 
Cost h Fcp TOUT TIN Stream 

- 1 6 320 500 H1 

- 1 4 380 480 H2 

- 1 6 360 460 H3 

- 1 20 360 380 H4 

- 1 12 320 380 H5 

- 1 18 660 290 C1 

140 1 - 700 700 S1 

10 1 - 320 300 W1 
                               

Heat exchanger ($ per year), 8.07004000 a+                            

 
Fig. 5 The final optimal network of case study C 

 
 
 

Table 4. Problem data for case study D 
Cost h Fcp TOUT TIN Stream 

- 0.852 8.79 366 423 H1 

- 0.852 10.55 411 522 H2 

- 0.852 12.56 422 544 H3 

- 0.852 14.77 339 500 H4 

- 0.852 17.73 339 472 H5 

- 0.852 17.28 450 355 C1 

- 0.852 13.90 478 366 C2 

- 0.852 8.44 494 311 C3 

- 0.852 7.62 433 333 C4 

- 0.852 6.08 495 389 C5 

37.64 1.136 - 509 509 S1 

18.12 0.852 - 355 311 W1 

Heat exchanger  ($ per year), 6.063.145 a   
                        
 
 
 

 
Fig. 6 The final optimal network of case study D 
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5 Conclusion 
This paper has presented a novel approach for the 
synthesis of heat exchanger networks relying on 
a genetic algorithm to perform structural and 
parametric optimization. The optimizer 
determines the exchangers in the final network 
and computes the optimum stream split flows 
and heat exchanger duties, for a given HEN 
structure. The algorithm can support the 
inclusion of undesirable or forbidden matches, 
and the enforcement of desirable ones. The 
newly developed optimization environment 
allows the user to treat arbitrary flowsheets 
including structure and parameterization of the 
system in question simultaneously in the 
optimization procedure. The simulations and the 
cost calculations exploit the complete process 
modeling accuracy without the necessity of 
simplifications due to restrictions imposed by the 
optimization method. 
The given results demonstrate the suitability of 
genetic algorithms for HEN optimization. 
Although the proposed procedure improved 
greatly the performance of the synthesis, the 
computational requirements are still a major 
issue when using superstructures. So it might be 
beneficial for future works to use a non-
superstructure based framework coupled with 
suggested algorithm.  
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