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Abstract: - The Crude Preheat Train (CPT) in a petroleum refinery recovers waste heat from product streams 
to preheat the crude oil. Due to high fouling nature of the fluids that flow through the exchangers, the 
performance deteriorates significantly over time as less heat can be transferred through the fouling layers. 
Prediction of the performance for optimal scheduling of the CPT operations requires a reasonably accurate 
mathematical model. There are no guidelines for selecting relevant input variables and correct functional 
forms for building theoretical models for such nonlinear systems. Neural Network (NN) offers the flexibility 
to model complex and nonlinear systems with good prediction capabilities. In this paper, prediction models 
using two different types of NNs are developed and compared for a heat exchanger to predict the change in the 
outlet temperatures over time. The data required for model building were collected from plant historian in a 
refinery. The data were processed for removal of outliers through Principal Component Analysis (PCA) and 
the important input variables (predictors) were selected using Projection to Latent Structures (PLS). A 
nonlinear auto-regression with exogenous inputs (NARX) type neural network model demonstrates its superior 
prediction capabilities with a root mean square error of less than 2.5 oC in the outlet temperatures and 
possesses a correct directional change index of more than 90%. 
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1   Introduction 
Energy recovery and saving are always the major 
concerns in any manufacturing process and industry. 
In refineries, as most of the energy is consumed in 
the form of heat, heat exchanger performance is very 
critical for their ability to recover heat from other hot 
product streams. In a refinery in Malaysia, this is 
achieved by a battery of 11 heat exchangers in the 
Crude Preheat Train (CPT). 
    Fouling occurs when deposited material or heavy 
residue from the flow gets stuck on heat transfer 
surfaces which reduces the overall heat transfer 
coefficient, and restricts the flow rate. Crude oil 
fouling in refinery preheat exchangers is a chronic 
and unavoidable operating problem that reduces 
energy recovery in these systems and costs the 
industry billions of dollars every year[1]. In the 
refinery, the crude oil tends to foul the heat 
exchangers due to the particles-laden characteristics 
and chemical constituents such as asphaltene drop-
out. 
   Fouling leads to operating problems, affects the 
efficiency of the heat recovery systems, and seriously 
alters the profitability of a refinery through over-
consumption of fuel, throughput reduction during 
cleaning operations, significant increase in pressure 

drop, furnace bottlenecking, and increase in 
maintenance costs. 
   The performance reduction due to fouling is 
rectified by periodic cleaning of the heat exchangers. 
However, during cleaning, the heat exchanger is out 
of the heat recovery loop and hence the overall heat 
recovery goes down. If the fouling rate can be 
predicted a priori, the heat exchanger cleaning 
schedule in the CPT can be planned to minimize 
operational disruptions. Development of an accurate 
prediction model is the aim of the current work in 
this paper. 
   For complex and highly nonlinear processes such 
as the CPT system, significant engineering time and 
effort is required to develop and validate detailed 
first-principle dynamic models. If the aim of analysis 
is prediction, it is not sufficient to uncover 
nonlinearities only. Furthermore, for many 
applications theory does not guide the model building 
by suggesting the relevant input variables or the 
correct functional form. This particular difficulty 
makes it attractive to consider an ‘atheoretical’ but 
flexible class of models. Artificial Neural Networks 
(ANN) of multi-layered perceptron type are 
essentially semi-parametric regression estimators and 
well-suited for this purpose, as they can approximate 
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virtually any (measurable) function up to an arbitrary 
degree of accuracy [2]. The most commonly used 
network architectures for process modeling include 
the feedforward network, the radial basis function 
network and the auto-associative network. Advanced 
network architectures are the dynamic, fuzzy, 
recurrent, and wavelet networks. Apart from process 
modeling, popular applications include model based 
process control, non-linear predictive control and 
state estimation. Major applications of NN in process 
industries have been for developing inferential 
analyzers. 
   Bhartiya and Whiteley [3] presented a step-by-step 
practical methodology for data processing and 
network training of a soft sensor. They illustrated the 
method with an example of a soft sensor trained to 
predict the 95% ASTM end point of the kerosene 
fraction in a refinery distillation column. They used 
PCA as a tool for the post processing sensitivity 
analysis of their soft sensor. 
   Multivariate techniques have various applications 
in the hydrocarbon processing. Bonavita et al. [4] 
presented a thorough study on the implementation of 
neural net-based inferential quality control on a crude 
unit. The application of NN model in the control of a 
riser-type Fluidized Catalytic Cracker unit was 
discussed in Alaradi and Rohani [5]. Yu and Morales 
[6] developed static and dynamic NN models for 
gasoline blending systems. 
   In the present paper, one of the heat exchangers in a 
CPT from a refinery is considered. The major scope 
of this work is to develop and compare feedforward 
backpropagation and NARX-type NN models in 
predicting the outlet temperatures in the shell and 
tube sides of the heat exchanger. This paper provides 
a brief explanation on the NN model types used in 
this work in Section 2; Section 3 explains the 
methodology followed in data pre-treatment and 
Section 4 provides the results and discussions.  
 
2 Neural Networks Models  
   Artificial Neural Networks (ANNs) have gained 
wider acceptance for modeling complex, highly 
nonlinear and poorly understood systems due to its 
flexible structure and architecture. Empirical models 
based on NNs have been developed and used for a 
variety of applications. Several modifications to the 
model based control strategies such as model 
predictive controllers have been suggested in 
literature which employ NN models simply because 
of its ability to capture the complex and nonlinear 
dynamics very well and also to predict accurately. 
   The success of a NN model in describing the 
dynamics of a system or predicting the future 

behavior largely depends on the choice of its type 
and structure. A brief description of the types of NN 
models used in this work is provided in Sections 2.1-
2.4. 
 
2.1    Feedforward Networks 
    The basic feedforward network performs a non-
linear transformation of input data in order to 
approximate the output data. The number of input 
and output nodes is determined by the nature of the 
modeling problem being tackled, the input data 
representation and the form of the network output 
required. The number of hidden layer nodes is related 
to the complexity of the system being modeled. The 
interconnections within the network are such that 
every neuron in each layer is connected to every 
neuron in the adjacent layers. Each interconnection 
has associated with it a scalar weight which is 
adjusted during the training phase. The hidden layer 
nodes typically have sigmoid transfer functions. 
   The complex part of this learning mechanism is for 
the system to determine which input contributes the 
most to an incorrect output and how that element get 
changed to correct the error. An inactive node would 
not contribute to the error and would have no need to 
change its weights. The training inputs are applied to 
the input layer of the network, and desired outputs are 
compared at the output layer. During the training 
process, a forward sweep is made through the 
network, and the output of each element is computed 
layer by layer. The difference between the output of 
the final layer and the desired output is back-
propagated to the previous layer(s), usually modified 
by the derivative of the transfer function, and the 
connection weights are normally adjusted using the 
Delta Rule [7]. This process proceeds for the 
previous layer(s) until the input layer is reached. 
Networks with biases, a sigmoid layer, and a linear 
output layer are capable of approximating any 
function with a finite number of discontinuities.  
 
2.2 Recurrent Networks 
    Increasing attention is now being paid to recurrent 
networks. Although these can take different forms 
they are all capable of capturing temporal behavior 
and provide multi-step-ahead predictions. Examples 
are the backpropagation-in-time networks, the Elman 
network [8] where the hidden neuron outputs at the 
previous time step are fed back to its inputs through 
time delay units; locally recurrent network 
representations where each neuron has one or more 
delayed feedback loops around itself; and globally 
recurrent networks where the network outputs are fed 
back to the inputs through time delay units. 
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2.3 Dynamic Networks 
   The basic feedforward network performs a non-
linear transformation of input data in order to 
approximate output data. This results in a static 
network structure. In some situations, such a steady 
state model may be inappropriate. The most 
straightforward way to extend this essentially steady 
state mapping to the dynamic domain is to adopt an 
approach similar to that taken in time series modeling 
such as linear auto-regressive-moving-average 
(ARMA) modeling. Past process inputs and outputs 
can be used to predict the present process outputs. 
Important characteristics such as system delays can 
be accommodated for by utilizing only those process 
inputs beyond the dead time. 
 
2.4  NARX  Networks 
   The nonlinear autoregressive network with 
exogenous inputs (NARX) is a recurrent dynamic 
network, with feedback connections enclosing several 
layers of the network, as shown in Figure 1 [9-12]. 
 

 
Fig. 1. NARX network structure. 

 
The NARX model is based on the linear ARX model, 
which is commonly used in time-series modeling.  
The defining equation for the NARX model is shown 
in (1), where the next value of the dependent output 
signal )(ty  is regressed on previous values of the 
output signal and previous values of an independent 
(exogenous) input signal. 
 

))(,),2(),1(),(,),2(),1(()( uy ntututuntytytyfty −−−−−−= ……
(1) 

 
Standard NARX architecture is as shown in Figure 
2(a). It enables the output to be fed back to the input 
of the feedforward neural network. This is considered 
a feedforward backpropagation network with 
feedback from output to input. In series parallel 
architecture, Figure 2(b), the true output which is 
available during the training of the network is used 
instead of feeding back the estimated output. The 

advantage is that the input to the feedforward 
network is more accurate. Besides, the resulting 
network has a purely feedforward architecture, and 
static backpropagation can be used for training. 
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Fig. 2. NARX network architecture: (a) Series,  
(b) Series-parallel 

 
 

3   Methodology 
    The performance of heat exchangers in CPT 
deteriorates rather slowly due to the resistance 
offered by deposition of foulants on the heat transfer 
surface. As the thickness of the fouling layer 
increases with time, the resistance to heat transfer 
also increases, thereby decreasing the heat transfer 
coefficient. In this work, input-output data for a heat 
exchanger from plant historian was collected for 996 
days. 
 
3.1 Data Pretreatment 
   Accuracy and reliability of data are important for 
developing models based on the data since the model 
only represents the data used to build the model. An 
important and critical step in model building is to 
pre-process the data for the removal of outliers and to 
fill in any missing data. Principal component analysis 
was used to identify the outliers and any missing data 
were filled with interpolation techniques. Data pre-
treatment including outlier detection, scaling and 
normalization have been presented in detail 
elsewhere [13]. From PCA analysis, 63 outliers were 
identified and removed resulting in the final 
observations of 933 days. 
3.2 Input Variable Selection 
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   In addition to data on flow rates and temperatures 
across the heat exchanger, the crude blend 
composition and their important properties were also 
collected from the plant historian. Altogether, it 
resulted in 38 variables and it is necessary to identify 
the variables that have significant influence on the 
performance of heat exchanger due to fouling. 
Projection to Latent Structures using partial least 
squares (PLS) was used to identify the input 
variables. Based on the correlation coefficients in 
PLS, 25 variables out of 38 were found to be 
important variables (Table 1) that have influence on 
the fouling.  

 
Table 1. Predictors used for NN 

model development. 

 
In Table 1, peak efficiency value denotes the 
maximum value of the efficiency after a cleaning and 
is dependent on the number of cleaning cycles that 

the heat exchanger has undergone. The amount of 
fouling depends on the total mass of the fluid which 
has passed through the system since the last cleaning. 
Tube and shell integral flows are the integrated flow 
rates from the last cleaning. Two resulting data sets 
are produced, (1) 25 variables which include the 
calculated variables with 933 observations, and (2) 23 
variables which exclude the calculated variables. 
These data sets are processed separately, where each 
of them was used to train, and validate the NN model 
following the step-by-step procedure of Bhartiya and 
Whiteley [2]. Each data set was segmented into 50%, 
40% and 10% sub-data sets for training, validation 
and testing, respectively. 
 
4 Results and Discussions 
    In this work, two different types of neural 
networks were used to model the heat exchanger 
performance, namely feedforward back-propagation 
and NARX recurrent neural network. The network 
structure for each type of model was optimized 
through trial and error technique. Two different sets 
of input variables were used to build the models. In 
the first set, the integral flow rates on the shell side 
and tube were included, as shown in Table 1. But, in 
the second set, these calculated variables were 
removed and it was expected that neural network 
model should be able to compute these variables. 
 
4.1 With calculated variables 
    As explained earlier, the cumulative flow rates on 
both the shell side and the tube side fluids were 
included in the data set. A feed forward network with 
25, 32 and 2 neurons in input, hidden and output 
layers, respectively, was trained, validated and tested. 
A NARX network model with 25, 35 and 2 neurons 
in input, hidden and output layers, respectively, was 
also trained, validated and tested. In both the models, 
the transfer functions used are linear, log-sigmoid and 
linear in input, hidden and output layers, respectively. 
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Fig. 3. RMSE values for FF BP and NARX type NN 
models with calculated variables 

1 
Peak Efficiency 
Value  
(0.2 – 1.0) 

14 
Total acid no.  
(0.12 – 0.57 
mgKOH/g) 

2 Tube inlet temp.  
(150 – 235 oC) 15 N2 content  

(170 – 227 ppm) 

3 Tube vol.flow rate 
 (85 – 140 m3/hr ) 16 

Ash content  
(0.0016 – 
0.0039 wt %) 

4 Tube integral mass 
flow 17 

Kinematic 
viscosity  
(1.3 – 1.67 cSt) 

5 
Shell inlet temp. 
(90 – 125 oC) 18 Char. Factor 

(11.78 – 12.2) 

6 Shell vol. flow rate  
(90  m3/hr) 19 Sodium content 

(4.3 – 8 ppm) 

7 Shell integral mass 
flow 20 Density  

(0.79 – 0.83 kg/l) 

8 
Basic sediment & 
Water  
(0.038 – 0.35% (vol)) 

21 
Crude A, 
fraction, 
(0 – 1) 

9 
Salt content  
(4.68 – 28 lb/1000 
bbls) 

22 Crude B, fraction 
(0 – 0.58) 

10 Wax content 
(3.8 – 8.0 wt %) 23 Crude C, fraction 

(0 – 0.17) 

11 Pour point 
(-10 – 21 oC)  24 Crude D, fraction 

(0 – 0.13) 

12 Flash point 
(8.4 – 25 oC ) 

13 Asphaltene content  
(0.22 – 0.5 mg/l) 

25 
Crude E, 
fraction 
(0 – 0.56) 
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Figure 3 shows the Root Mean Square Error (RMSE) 
of prediction (using test data set) for the two neural 
network models. As can be clearly observed, NARX 
model supersedes that of Feedforward 
backpropagation (FF BP) model. The RMSE values 
of the prediction for both tube- and shell-side are 
lower for the NARX model in comparison to the FF 
BP. Table 2 shows the corresponding Correct 
Directional Change (CDC) values for both models. 
The higher CDC value, the better is the model in 
predicting accurately the trend of the data.  
 
Table 2. CDC values comparison between FF BP and 

NARX type models with calculated variables 
 

 FF BP NARX 
Tube-side 94.62% 96.77% 
Shell-side 92.47% 91.40% 

 
4.2 Without calculated variables 
   In this case, the cumulative flow rates of shell side 
and tube side fluids were removed from the data set 
resulting in a decrease in the number of predictors 
from 25 to 23. A feed forward network with 25, 17 
and 2 neurons in input, hidden and output layers, 
respectively, was used. A NARX network model also 
with 25, 17 and 2 neurons in input, hidden and output 
layers, respectively, was used. In both models, the 
transfer functions used are linear, log-sigmoid and 
linear in input, hidden and output layers, respectively. 
Fig. 4 shows the RMSE values for the neural network 
models when the calculated variables, tube and shell 
integral flows, are removed. When these calculated 
variables are removed, the RMSE values for models 
increase (see Figures 3 and 4). However, NARX 
model performs significantly better than FF BP 
model as seen previously. 
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Fig. 4. RMSE values for FF BP and NARX type NN 
models without calculated variables. 

 
Table 3 shows the corresponding CDC values, which 
show higher accuracy of trend prediction by the 
NARX model. These results indicate the higher 

potential of the NARX model for the heat exchanger 
model development as it reduces the dependency on 
calculated variables.  
 
Table 3. CDC values comparison between FF BP and 

NARX type models without calculated variables 
 FF BP NARX 
Tube-side 91.40% 93.54% 
Shell-side 87.10% 92.47% 
 

 
Figure 5 shows the plot of actual versus predicted 
shell and tube side outlet temperatures for the NARX 
model. From this figure, it can be clearly seen that 
excellent prediction is achieved. 
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Fig. 5. Actual vs predicted outlet temperatures using 

NARX model: (a) Shell side, (b) tube side 
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5   Conclusions 
   In this paper, two types of Neural Network models 
have been developed to predict the performance of a 
heat exchanger in a Crude Preheat Train. Numerical 
evaluations show that nonlinear autoregressive 
network with exogenous inputs (NARX) type NN 
model performs significantly better than the 
Feedforward Backpropagation network model. The 
NARX model also shows a more robust performance 
even when the number of inputs is reduced by 
removing the calculated shell and tube integral flows. 
Development of such models for each heat exchanger 
in the CPT and integration of the models for optimal 
scheduling of the CPT operations needs further 
research. 
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