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Abstract:- Plasmodium vivax malaria differs from P. falciparum malaria in that a person 
suffering from P. vivax malaria can experience relapses of the disease.  Between the relapses, 
the malaria parasite will remain dormant in the liver of the patient, leading to the patient being 
classified as being in the dormant class.  A mathematical model for the transmission of P. 
vivax is developed in which the human population is divided into four classes, the susceptible, 
the infected, the dormant and the recovered.  Two stable equilibrium states, a disease free 
state E0 and an endemic state E1, are found to be possible.  It is found that the E0 state is stable 
when a newly defined basic reproduction number R0 is less than one.  If R0 is more than one 
then endemic state E1 is stable. The conditions for the second equilibrium state E1 to be a 
stable spiral node are established. It is found that solutions in phase space are trajectories 
spiraling into the endemic state. The different behavior of our numerical results are shown for 
the different values of parameters     
 
Key-Words: Malaria transmission models, Plasmodium Vivax malaria, equilibrium states, 
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1  Introduction 
The developmental biology [1] of the 
parasite Plasmodium vivax determines to a 
great extent the mathematical model 
needed to describe the transmission cycle 
of the human disease caused by this 
parasite.  The sporizoites (one of the 
stages of the malaria parasite) are 
introduced into the blood stream of the 
human by the bite of infected mosquitoes.  
These then move to the liver of the human.  
Here some of them transform themselves 
into merozoites, which then invade the 
blood cells and cause the illness.  The 
remaining sporizoites are transformed into 
hypnozoites which then lay dormant in the 
liver.  The relapses occur when some of 
the hypnozoites transform themselves into 
schizents and then into merozoites.  These 
new merozoites then reinvade the blood 
and cause the illness again.  These relapses 
can occur up to three years after the initial 
infection.  Only a small number of P. 

vivax merozoites remain in the blood 
between the relapse episodes. The 
hypnozoite stage does not occur in the 
three other types of malaria, Plasmodium 
falciparum, Plasmodium malariae and 
Plasmodium ovale. 
 The absence of the hypnozoite stage 
in the malaria caused by the P. falciparum 
parasite makes the transmission models 
used to describe P. falciparum malaria 
invalid for describing the transmission of 
the malaria caused the P. vivax parasite.  
The reasons for P.  falciparum malaria to 
be studied more than P. vivax malaria are 
(1) 90% of the malaria cases in Africa is 
due to P. falciparum malaria, (2) most of 
the deaths due to malaria (2-3 million a 
year) occur in Africa [2] and (3) P. 
falciparum malaria is a life threatening 
disease, while P .vivax malaria is not. It 
was commonly assumed that information 
about vivax could be extrapolated from the 
falciparum research.  This assumption was 
challenged at a recent conference 

Proceedings of the 3rd WSEAS/IASME International Conference on Dynamical Systems and Control, Arcachon, France, October 13-15, 2007      276



convened by the Multilateral Initiative on 
Malaria [3].  The transmission of malaria 
is usually described by the Ross-
MacDonald (RM) model [4].  However, 
this model is only suitable for the 
transmission of the P. falciparum malaria 
since it does not contain a role of possible 
relapses of the illness.  One of the present 
authors (IMT) has introduced a simple 
mathematical model [5] to describe the 
transmission of P. vivax malaria.  In the 
model, we included a dormant class in 
which there are no merozoites in the 
blood, only dormant hypnozoites in the 
liver.  A person can be  reinfected when 
the hypnozoites are activated. 
 We wish to look at the model again. 
In the present state of concern for medical 
safety, there is no place for human 
experimentation to see what would happen 
if new therapies were adopted.   
Mathematical modeling allows one to 
simulate what would occur. We introduce 
in Section 2, the modification of the RM 
model which would make it applicable to 
the transmission of P. vivax malaria   In 
Section 3, we analyze our model and 
simulate the consequences of changing the 
rate of relapse and other parameters in the 
model. We discuss in Section 4, the 
implication of the insights obtained from 
the simulations.  Part of the urgency for 
doing research on P. vivax malaria is due 
to the fact that P. vivax malaria is 
becoming an emerging public health 
problem.  It is estimated that about 50% of 
the malaria cases outside of Africa and 
10% in Africa are due to P. vivax and that 
the percentages are rising.  
 

2  Transmission model 
The mathematical modeling of the 
epidemiology of malaria (P. falciparum) 
was started by Ross [6] in 1911and 
improved on by MacDonald [7].  In the 
Ross model, an individual in the human 
population is classified as being in a non-
infected or infected state.  This gives rise 
to what is known as a SIS (susceptible-
infected-susceptible) model.  It has been 
suggested [7] that the human population 
should instead be divided into three states; 
non-infected, infected but without any 
acute clinical signs, infected with acute 

clinical sign, to better reflect the clinical 
status of the individual.  Others believe 
that the population should be divided into 
susceptible, infected but not infectious and 
infected and infectious. In our model for 
the trans-mission of P. vivax, we divide 
the host (human) population into 
susceptible  ),S( h infected )I( h , dormant 

 )D( h and recovered  )R( h classes.  The 
last category, the recovered are susceptible 
to further infections and so they reenter 
into the hS class. In Figure 1, we show the 
flow chart describing what is occurring in 
the human population.  As we see, λNT 
humans are entering into the susceptible 
class through birth and hΙ1r)-(1 α  , h3Dr  

and (t)hRr6  through the recovery of 
members of the infected and dormant 
categories (with λ being the birth rate; NT, 
the total human population; r1, the 
recovery rate of a person in the infected 
category; r3, the recovery rate of a member 
of the dormant population and α being the 
percentage of infected people in whom 
some hypnozoites remain dormant in the 
liver).   (1-α) is the percentage of infected 
humans who recover and become 
susceptible again.  The time rate of change 
of the number of susceptible members is 
equal to the number entering minus the 
number leaving.  This gives us the 
following differential equation for the time 
rate of change of the susceptible 
population; 

 
h hh T 3 1

'
v hh hh h 4

d S (t) λN r D (t) (1 α)r I (t)
dt
               γ I (t)S (t) µ S (t) r R (t)

= + + −

− − +

           

                                     (1a) 
Applying similar considerations to the 

other population classes, we obtain               
'

h v hhh 1 h

h h2 5

d I (t) γ I (t)S (t) (r µ )I (t)
dt
                r D (t) r I (t),

= − +

+ −
   

                                             (1b) 
          

(t)D)µr(r(t)Iαr(t)D
dt
d

hh32h1h ++−=

                                                       (1c)                                        
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and                               

(1d)    (t)R)µ(r(t)Ir(t)R
dt
d

hh4h5h +−=

where the parameters in the above 
equations are defined as 

λ    is the birth rate of human  
population,  

µh  is the death rate of  human 
population,  

NT  is the total number of human  
population,  

α  is the percentage of infected  
human in whom some hypnozoites remain 
dormant in the liver,  

r1   is the rate at which a person 
leaves the infected class by recovering or 
by entering into the dormant class, 

r2   is the rate at which the  
dormant human relapses back to the 
infected human, 

r3   is the recovery rate of the  
dormant human, 

r4  is the rate at which the  
recovered human relapses back to the 
susceptible human, 
and 

r5   is the rate at which the 
infected human recovers, since P. vivax 
infection is non lethal, the death rates will 
be the same for all human classes and we 
will have hRhDhIhSTN +++=   

 Eqn. (1a) also contains the 
term (t)S(t)Iγ hv

'
h .This term represents 

the lost of the susceptible person due to a 
bite of a infected mosquitoes.  γ’h is the 
rate at which the P. vivax parasite is 
transmitted from the mosquito to the 
human and is given by [8]                                                     

                   
mTN

hβbhγ' +
=              (2) 

where b is the specie-dependent biting rate 
of the mosquitoes; m is the population of 
other animals that the mosquitoes can feed 
on and βh is the probability the parasite 
passed on by the mosquito will continue to 
thrive in the human.  βh depends partly on 
the immune response of the host to the 
infection.  vI  is the number of infected 
mosquitoes.  The dynamics of the 
mosquitoes populations are given by   

(3b)         (t).Iµ(t)I(t)Sγ
dt
Id

and

(3a)   (t)Sµ(t)I(t)SγA
dt
Sd

vvhv
'
v

v

vvhv
'
v

v

−=

−−=

At equilibrium, the total number of 
female mosquitoes will be A/µv. A is 
the rate at which the mosquitoes are 
recruited and µv is the death rate for 
the mosquitoes.  It should be noted that 
a mosquito can not be infected through 
a bite of a human belonging to the 
dormant class.  γ’v is the rate at which 
the mosquitoes become infected with 
the Plasmodium Vivax parasite once 
the mosquito has bitten an infected 
human. We also assume vIvSVN += . 
The working equations of the model 
are obtained by dividing Eqns. (1a), 
(1b), (1c) and (1d) by NT and Eqns. 
(3a) and (3b) by A/µv.  This would 
give us six equations expressed in 
terms of the renormalized variables; 

Thh /NSS = , Thh /NII = , Thh /NR R= ,
)/(A/SS vvv µ= and )/(A/II vvv µ= .  

The conditions Sh + Ih+ Dh + Rh = 1 
and Sv + Iv = 1, leads to only four of 
these equations being needed.  We pick 
the four equations to be 

h h 3 h 1 h

h v h h h

4 h h h

d S (t) µ r D (t) (1 α)r I (t)
dt
                γ I S (t) µ S (t)
               r (1 S (t) I (t) D (t))

= + + −

− −

+ − − −
                                                              (4a)                                  

h h v h 1 h h 2 h

5 h 5 h h h

d I (t) γ I S (t) (r µ )I (t) r D (t)
dt
              r I (t) r (1 S (t) I (t) D (t))

= − + +

− + − − −
                                                              (4b)                    

(t)))Dµr(r(t)Iαr(t)D
dt
d

hh32h1h ++−=      

                                                              (4c) 
and                                         

(t)Iµ(t)(t))II(1γ(t)I
dt
d

vvhvvv −−=     

                                                            (4d)  

Proceedings of the 3rd WSEAS/IASME International Conference on Dynamical Systems and Control, Arcachon, France, October 13-15, 2007      278



where the new transmission rates are γh = 
γ’h(A/µv) and γv = γ’vNT.   The domain of 
solutions is 
Ω {(S ,I ,D ,S ,I )|h h h v v
          0 S I D 1, 0 S I 1}h h h v v

=

≤ + + ≤ ≤ + ≤
. 

 

3  Analysis of the 
Mathematical Model  
 
3.1    Analytical results. 
To find the equilibrium points, we set the 
RHX’s of Eqns. (4a) to (4d) to zero. Doing 
this, we get   

i) the disease free equilibrium state 
EO = (1, 0, 0, 0) 

ii) the endemic equilibrium state  
E1 = )I,D,I,(S *

v
*
h

*
h

*
h   

where  

                
Pµµγ

BNS
4623 hhv

*
h = ,    

                 
Pγ

RX
I

v

0*
h

−
= ,                  

               
Pµµγ
R))(Xr(α

D
46h23hv

0146h*
h

−
=

µ
, 

                 (5)             
Bγ

RX
I

h

0*
v

−
=                   

with  
             

h46N µ (µ (µ r ) r (r (1 α) r ))h h 13 1 2 3
       (µ (µ r ) r r r r )r ,h h 26 2 4 3 6 5

= + + − +

+ + + +
 

                
B µ (µ (µ γ ) αµ rh h v v v 146
     (µ r )(r r )) µ (µ r )r ,v v 2 3 v h 4 523

= + +

+ + + + +
   

P µ (γ (µ αr ) µ (µ r )h h h 1 h h 1346 23
       r (r (1 α) r )) (µ (µ r )1 2 3 h h 26
       γ µ r r r r )r ,h h23 2 4 3 4 5

= + + +

+ − + + +

+ + +

   

),2r1rvαµ
23hµvγh(γ

46hµ0X +=  

 
R µ (µ (µ (µ r ) r (r r ))v h h h 13 1 2 346
      (µ (µ r ) r r r r )r )h h 26 2 4 3 4 5

= + + +

+ + + +
, 

where                       
32h23h rrµµ ++= , 4h46h rµµ += , 

32113 rrrr ++=   
                                                      

43226 rrrr ++= .                             (6) 

We observe that endemic equilibrium 

point exists when RX0 >  or 1
R

X0 > . 

        The local stability of each 
equilibrium point is determined by the 
sign of all eigenvalues.  If all eigenvalues 
have negative real parts, then that 
equilibrium point is locally stable. 
Eigenvalues for each equilibrium point are 
obtained by setting         
                       0λI)det(J =−           (7)    
Where J is the gradient matrix evaluated at 
the equilibrium point. 
         The correspondent eigenvalues for 
each equilibrium point are found by 
solving the characteristic equation; which 
is in the form                                

001
2

2
3

3
4 =++++ ssss λλλλ       (8) 

By using Routh-Hurwitz criteria [9], each 
equilibrium point is locally stable if the 
following conditions are satisfied; 
              i) 03 >s ,                               (9) 
             ii) 01 >s ,                              (10) 
             iii) 0s0 > ,                            (11) 

            iv) 0
2
3

2
1123 ssssss +>            (12) 

         We check the above conditions by 
using MATHEMATICA (Wolfram 
Research, Champaign, IL), then we found 
that 0E is locally stable for 1R 0 <  and 

1E is locally stable for 1R 0 > ; where 

R
X

R 0
0 = . 

 
3.2  Numerical Results 
In this section, we compare the susceptible 
of our model for the different parameters. 
Case I, 4r  is changed and the other 
parameters are fixed. 
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1(a) 

 
                            1(b) 
Fig.1(a). Behavior of our model for  

1
4 )5*365/(1 −=r day, R0  = 38.6. 

        (b). Behavior of our model for  
1

4 )20*365/(1 −=r day, R0 = 38.7. 
          The other similar parameters for 
fig.1(a) and fig.1(b) are 14/11 =r -1 day, 

)5*365/(12 =r -1 day, 
)70*365/(1=hµ

-1 day, 30/13 =r -1 
day, 75.0=α , 04.0=vµ  5.2=hγ , 

25.0=vγ , 3/15 =r -1 day, 
)70*365/(1=hµ . 

 
Case II, 2r  and 4r  are changed and the 
other parameters are fixed. 
 

 
2(a) 

 
                              2(b) 
Fig.2(a)Behavior of our model for  

1
2 )5*365/(1 −=r day, 

1
4 )5*365/(1 −=r day and R0 = 38.6. 

        (b)Behavior of our model for  
1

2 )20*365/(1 −=r day,
1

4 )10*365/(1 −=r day and R0 = 38.5. 
          The other similar parameters for 
fig.2(a) and fig.2(b) are 14/11 =r -1 day, 

)70*365/(1=hµ
 -1day, 30/13 =r  -

1day, 75.0=α , 04.0=vµ  5.2=hγ , 
25.0=vγ ,  3/15 =r  -1day.    

 
Case III, When we input the effect of time 
delay into our model. In this case, the 
members of the dormant class do not 
relapse until a passage of time (τ ). 

 
                      3a) 

 
                      3b) 
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Fig.3(a)Behavior of our model for  
1

4 )15*365/(1 −=r day and 
30*365=τ day. 

        (b)Behavior of our model for  
1

4 )50*365/(1 −=r day and 
50*365=τ day. 

          The other similar parameters for 
fig.3(a) and fig.3(b) are 14/11 =r -1 day, 

)70*365/(1=hµ
-1day, 

)5*365/(12 =r -1day, 30/13 =r  -1day, 
75.0=α , 04.0=vµ  5.2=hγ , 
25.0=vγ , 3/15 =r  -1day.    

 

4  Conclusion 
In this study, we have compared the 
results of the simulation when different 
values of several parameters are used.   
Figures 1 to 3 show the trajectories of the 
behaviors in (human) infected-dormant 
vector space.  They all indicate a spiraling 
of the trajectories into the endemic state.  
Each pair of figures 1a) & 1b), 2a) & 2b) 
and 3a) & 3b) shows the behavior when 
the parameter is changed.  When the time 
at which the recovered human relapses 
back to the susceptible human is longer, 
the spiraling in is more severe as shown in 
figure 1. When the time at which the 
dormant human relapses back to the 
infected human is longer than the time at 
which the recovered human relapses back 
to the susceptible human, the spiral pattern 
is more severe.  

We have also looked at the effects of 
there being a time delay before a person in 
the dormant class relapses into the infected 
class, i.e., the symptoms returns.  We have 
simulated the course of the disease 
(malaria) delay time is changed.  In Figure 
3, we show the results of our numerical 
simulation.  As we see, when the time 
delay is longer, the spiral pattern is more 
severe. 
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