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Abstract: – This paper presents some theoretical and numerical problems that arise in inverse problems in 
electromagnetic devices.  

The principal objective of the paper is to describe some computational aspects for inverse problems in coupled 
electromagnetic and thermal fields. We develop the necessary conditions for optimality using Lagrange multipliers. 
The state equations are mathematical models for magnetic field in case of time-harmonic Maxwell equations in 
vector magnetic potential formulation for axisymmetric fields. The model for the heat transfer is the heat 
conduction equation.  

The state and co-state equations are discretised by the finite element method using domain decomposition 
techniques for the analysis domain. The analysis domain is divided into two overlapping subdomains for the two 
coupled-fields considering physical significance of the pseudo-boundary of the two subdomains.   
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1 Introduction 
It is well known that the nature is complex in its 
behaviour and the abstract models do not capture 
accurately the laws of the nature. We work with 
abstract models that try to describe the phenomena 
from nature and the technical devices. But it is a great 
mistake to think that we have perfect models of the 
natural phenomena. More, many numerical algorithms 
are not discovered so that, although we limit our 
discussion to our actual achievements in this area, we 
must dream and to seek permanently new and modern 
approaches for the actual problems in science, technics 
and life. 

Analytical solutions for the electrical engineering 
problems are limited to some simple applications and 
ignore some physical phenomena. For complex 
problems the accurate models are necessary and the 
numerical solutions are efficient approaches for an 
optimal design and operation.  

With the advent of modern digital computers, many 
numerical models were developed and they become 
widely used in the scientific computing. We use the 
old algorithms and transform them for the new 
architectures but we must invent new algorithms 
having in our mind the computational power of the 
new computers. 

The efficient design of the electromagnetic devices 
has resulted in more stringent specifications and a 
demand for optimal operation, which is very important 

in high-performance electrical power systems. More 
exacting specifications have demanded during the 
design stage the development of accurate methods of 
predicting the performance characteristics of these 
devices. Some of the performance indicators of 
concern in the design of the power devices are the 
electromagnetic forces, iron losses, the eddy-currents 
effects and the heat transfer between the component 
parts. Prediction of the flux densities and current 
densities can be used to compute forces and local 
heating, both of which are of a serious concern to the 
designer of the devices of high performance.  

The equations of the electromagnetic fields and 
heat dissipation in electrical engineering are coupled 
because the most of the material properties are 
temperature dependent and the heat sources represent 
the effects of the electromagnetic field [5]. 
 
 
1.1. Motivations for optimisation of coupled 
problems 
In practical engineering synthesising the best 
engineering solution to a given design problem is of 
great interest. This requirement in electrical 
engineering is called inverse problem or optimisation 
problem, and several methods have been developed for 
this purpose. Among them the deterministic method 
using design sensitivity analysis has proved to give a 
proper design in terms of computational efficiency.  
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Optimisation methods has been efficiently 
developed and applied to electromagnetic devices and 
mechanics. Unfortunately, the methods developed 
always deal with single systems. The reality is the 
coupled problems are complex because the critical 
design parameters are in both systems. 

In the area in discussion, one of the principal 
criteria of performance is to control the distribution of 
the temperature in a device. In inverse problems the 
heat sources play the role of the control variable of the 
heat dissipation in an electromagnetic device [2]. 

With the terminology of the system theory, we 
identify two kinds of the heat sources (and commands 
in an inverse problem): 
• Distributed commands (electrical  currents) 
• Boundary commands (Dirichlet condition, 

Neumann condition, convection and radiation) 
A control of the electromagnetic devices can be 

done by internal (distributed) commands or/and 
boundary commands. For the first case the commands 
are the heat sources (position, amplitude). 

In the heating of the electromagnetic devices, the 
distributed commands are the internal heat sources 
(position, amplitude) that are represented by:  
• Ohmic losses from driving (source) currents 
• Ohmic losses from eddy currents induced in 

conducting materials of the time variable magnetic 
field 

• Dielectric losses due to friction in the molecular 
polarisation process in solid dielectrics that form 
the insulation of the high-voltage apparatus 

• Hysteresis loss in magnetic problems. It is due to 
magnetic domain friction in ferromagnetic 
materials. 

 The boundary commands can be [3]: 
• Dirichlet command, that is, an imposed 

temperature on the boundary of the spatial domain  
• Neumann command  that involves an imposed 

flux temperature on the boundary of the spatial 
domain  

• Convective command (the temperature of the 
ambient medium or a cooling fluid, a parameter of 
the cooling fluid as the speed etc)  

• Radiation commands (the temperature of the 
ambient medium or other parameters that are 
outside the spatial domain of the field problem and 
influences the temperature of a device by radiation 
phenomenon).  

 
 
2 The state equations 
A complete physical description of electromagnetic 
field is given by Maxwell’s equations in terms of five 
field vectors: the magnetic field H, the magnetic flux 

density B, the electric field E, the electric field density 
D, and the current density J. In low-frequency 
formulations, the quantities satisfy Maxwell’s 
equations [5]: 

JH =×∇    (1) 

t
B

E
∂

∂
−=×∇   (2) 

0=Bdiv    (3) 

cDdiv ρ=    (4) 
with ρc the charge density. 
For simplicity we gave up to the bold notations for 

vectors. 
The second set of relationships, called the 

constitutive relations, is for linear materials: 
EJEDHB σεμ === ;;  

with σ – the electric conductivity and μ the 
magnetic permeability. 

The B-H relationship is often required to represent 
non-linear materials. The current density J in Eq. (1) 
must represent both currents impressed from external 
sources and the internally-generated eddy currents.  

The formulation with vector and scalar potentials 
has the mathematical advantage that boundary 
conditions are more often easily formed in potentials 
than in the fields themselves. The magnetic vector 
potential is a vector A such that the flux density B is 
derivable from it by the operation curl or the operator 
(∇ ×). 

 
 

3 Inverse problems 
In this section we present some computational aspects 
for optimal control of the heat transfer in solids, both 
for single system and coupled systems. For the single 
system we consider the case of the conduction heat 
transfer using as mathematical model the heat equation 
in space 2D. The functional cost (objective function) is 
a quadratic form [4].  
 
 
3.1. Optimal control by distributed-commands 
The general class of the problems dealt with this paper 
is governed by the following differential equation [5]: 
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where u(x,y) is the temperature in the analysis 

domain Ω, and  C =C1 U C2 U C3 U C4 is the boundary 
of the domain;  h is a known function representing 
internal heat generation and f is the command (an 
unknown function).  

In (7) u0 is a known function (Dirichlet condition) 
and in (8) we have a Neumann condition with q -the 
flux on the boundary. On the boundary C3 we have a 
convective condition (9) with α the convection 
coefficient and v the ambient temperature. On the 
boundary C4 we have a mixed-condition (as for 
example convection and radiation condition), with g a 
known function. In (6)  kx , ky, are the thermal 
conductivities in the directions of the axes of the co-
ordinates system Oxy. In the relationships (7)-(9), ∂/∂n 
is the directional derivative normal to the boundary C. 

We consider a functional cost by the form [3]  
dy dx)u-(uc=J(w) 2

D
 

0 ∫
Ω

   (11) 

with c0 - a given positive coefficient and uD - an 
imposed internal temperature distribution. This 
functional penalises the deviation of the temperature 
from an imposed (desired) distribution. 

The problem of the optimal control consists in the 
minimisation of the functional (11). In other words we 
seek a command f* in F (an admissible set) such that 
[7]: 

Ff   J(f);)fJ( * ∈∀≤  
in the conditions (13)-(17). Frequently, the set of 

admissible commands is by the form: 
}fff:)(L{f=F 2 maxmin ≤≤Ω∈  

Two practical cases appear: 
• the positions of the distributed sources (xi, yi) 

are known and the intensities fi of these 
sources are required, that is the command 
function has the form: 

 ∑
=

−−=
n

i
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         with δ the Dirac's function. 
• the intensities fi are known and the positions 

are required. 
The first case is simpler than the second case 

because it doesn’t involve geometrical parameters in 
the design of the device.  

In our examples we considered a fixed position of 
the heat sources and we tried to seek the amplitudes of 
the heat sources so that the functional cost has a 
minimum. 

 
3.1.1. Necessary conditions for optimality 
We transform the constrained optimal control problem 
into an unconstrained problem through the 
introduction of adjoint function Φ. We define the 
augmented cost-functional by [3]: 
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Necessary conditions for optimality are derived by 
a variational approach. It is considered a variation δf in 
the command f that introduces a variation δL. From 
the first variation of L, results the adjoint equation [2]: 
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with boundary conditions: 
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To obtain the optimal command f* (practically, the 
method of gradient projection), the algorithm proceeds 
as follows: 
1. make an initial guess of the command f0 and set 

the iterations counter n to zero; 
2. solve the state equation (6) with conditions (7)-

(10); 
3. solve the adjoint equation (13) with conditions 

(14)-(17); 
4. compute the new command: 

• )f n(Js.-f n=f 1+n ′   (18) 
with s the length of the step in the antigradient 
direction. 

5. repeat the steps 20-40 until subsequent changes in J 
are less than a pre-set criterion. 

The length of the step s is determined by a one-
dimensional search technique [7]. 

 
 

3.2. Optimal control by boundary commands 
Another practical case is the boundary control. For 
example the speed of the cooling medium in an 
electromagnetic device is the principal command for a 
desired temperature in device.  The general class of the 
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problems dealt with this paper is governed by the 
following differential equation: 
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with specified boundary conditions. In (19) f is a 
known function that represents internal heat sources- 
the Joule-Lenz's effect and eddy-current losses. 

The boundary conditions are: 
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where: u (x, y) is the temperature in the analysis 
domain Ω from the bi-dimensional space  R2 and C 
=C1 U C2 U C3 U C4 is the boundary of the domain. In 
(20) u0 is a known function (Dirichlet condition) and 
in (21) we have a Neumann condition with q -the flux 
on the boundary. On the boundary C3 we have a 
convective condition (22) with α the convection 
coefficient and w the ambient temperature. On the 
boundary C4 we have a mixed-condition (as for 
example convection and radiation condition), with g a 
known function. In (19)  kx, ky are the thermal 
conductivities in the directions of the axes of the co-
ordinates system Oxy. In conditions (21)-(23), ∂/∂n is 
the directional derivative normal to the boundary C. 

The mathematical model of the heat equation in 
space 2D, also is met in axisymmetric field, where the 
equation (6) becomes: 
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In a convective control, w can be chosen as a 
command variable. We consider a functional cost by 
the form:  

∫
Ω

−= dxdyDuucJ(w) )(0    (25) 

with: c0 - a given positive coefficient;  uD-an 
imposed internal temperature distribution. 

The functional cost has a practical significance: it 
penalises the deviations of the temperature in the 
domain from the imposed standard (uD). On the 
boundary C3 U C4 we apply a command w ε L2 (C) - 
the space of the integrable-squared functions, with g a 
known function. The boundary command w can be the 
temperature of the cooling medium, which is we have 
a convective control like in (22) where the coefficient 
α is supposed constant or depends by the boundary 
temperature. In another practical case, the command w 

is the speed of the cooling medium (like in the oil-
immersed transformer), and g has the form g (u, w) =α 
(w) (u-u∞), where u∞ is the temperature of the cooling 
medium (supposed a constant). The dependence of α 
by w must be known but unfortunately this is a 
difficult task. It is determined from experimental data 
and is expressed using nondimensional parameters as 
Nusselt and Reynolds numbers. 

The problem of the optimal control consists in the 
minimisation of the functional (25). Practically we 
seek a command w* ε W (an admissible set) such that: 

 Ww   J(w))w*J( ∈∀≤   (26) 
in the condition (26), with specified boundary 

conditions (20)-(23). 
Frequently, the set of admissible commands is by 

the form [7]: 
}wwwL{w=W maxmin:)(2 ≤≤Ω∈  (27) 

 
 

3.2.1. Necessary conditions for optimality 
We transform the constrained optimal control problem 
into an unconstrained problem through the 
introduction of adjoint function Φ. We define the 
augmented cost-functional by [3]: 
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Necessary conditions for optimality are derived by 
a variational approach. It is considered a variation δw 
in the command w that introduces a variation δL. 
From the first variation of L, results the adjoint 
equation [5]: 
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with boundary conditions: 
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The gradient of the cost-functional is: 

 |C4w
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The gradient method [4] can be employed to obtain 
the optimal command w* (or the method of gradient 
projection for the constrained problem). 
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3.2.2. A numerical model 
For obtaining the optimal command w*, the gradient 
method can be used with good results, especially for 
the unconstrained commands. For this case the 
gradient method proceeds as follows [4]: 
• make an initial guess of the command w0, and set 

the iterations counter to zero; 
• solve the state equation (19) with conditions (20)-

(23); 
• solve the adjoint equation (29) with the boundary 

conditions (30); 
• compute the new command: )w(Js.-w=w nn1+n ′  
• repeat the steps 20-40 until subsequent changes in 

J are less than a preset criterion. 
The length of the step s is determined by a one-

dimensional search technique. Recent developments 
allow replacing the step length rule by a trust region 
method. In the application program developed by the 
authors, it was used the following rule: an initial value 
for s is chosen and the functional-cost is calculated and 
if its value isn't less than the old value, the length of 
the step is divided to two. This procedure continues 
until the monotony of the functional is satisfied. The 
disadvantage of this rule is that requires an iterative 
method to determine s. The steps 20 and 30 of the 
algorithm imply the solution of the state and adjoint 
equations. The finite element method was used to 
obtain approximate solutions in finite dimensional 
subspace.  

Finally, by assembling the element equations, 
results an algebraic equations system. The adjoint 
equation (27) and cost-functional are discretized in the 
same manner. 
 
3.3. Optimal control of the heat in electrical 
cables by boundary commands 
As target examples we consider an infinitely long 
coaxial cable with a stranded inner conductor carrying 
the direct current. This problem can be treated as a 
two-dimensional problem. The current density is a 
constant and this assumption is valid in the analysis 
and synthesis of electrical devices where the current 
density J is a specified constant in conductors and zero 
elsewhere. This inherent approximation becomes more 
and more valid as we use smaller and smaller 
triangles. In the alternating current, the skin effect 
appears but in the most practical systems the 
conductor is stranded (that is made up several tightly 
wound strands of conductor insulated from each 
other). This solution forces the currents to flow 
through the entire cross section of the conductor and 
thereby utilise the material better. Hence the validity of 
assuming uniform density as in direct current systems 
can simplify the computation. This assumption can 

lead at some practical applications. For such a system 
it has seen that the governing equation is (19). With 
the origin of the co-ordinates system in the centre of 
the cable, only a part of the entire domain is used. The 
convective command w is applied on the shield of the 
cable. The functional cost is by the form (25). We 
considered an averaged value of the gradient so that 
we can obtain a sub-optimal command. 

In this target example we consider a coaxial cable 
with a non-uniform current density and two insulation 
layers. In the figure 1 the analysis domain is presented. 
The geometrical dimensions are: conductor radius is 
15 mm, the outer radius of the first layer is 30 mm and 
the outer radius of the second layer is 50 mm. The 
resistivity of the copper was considered at the 
temperature 75 0C and equal to 1.78 .10-8 Ω/m.  The 
physical properties are: thermal conductivities 
kx=ky=385 W/m.0C in the copper and equal to k1=0.14 
W/m.0C and k2=0.175 W/m.0C in the insulation 
layers; α=12 W/m2.0C .The current density is 5.0.10-5 
A/mm2. The minimum value of J (w) was found to be 
equal to 5.604 for c0=0.0001. The number of iterations 
is 181 with the initial value of the command equal to 
400C. The optimal command is 63.95 0C for uD=75 0C. 
 

Fig. 1 – Analysis domain and mesh 
 
 In numerical simulation it is considered a medium 

value of the gradient on the boundary, that is in the 
formula (29) the command w, at each iteration step, is 
a constant (a frequent case in industry where we 
consider an average value of the command variable). 
Any case may be treated in the same manner (for 
example, a piecewise command or a local command). 

 
 

7 Conclusions 
The problem of coupled fields and inverse problems in 
electrical engineering is a complex problem in terms 
of computing resources. It is obviously that a 
command variable can be a function in any system of 
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the coupled system. For example, the heat source (as 
command variable) is an electrical parameter 
determined in the electrical system as Joule-Lenz’s 
effect of the eddy-currents. As output of the coupled 
system can be either the temperature distribution in the 
electromagnetic device or the distribution of the flux 
density B in different parts of the electromagnetic 
device.  

The state and co-state equations are discretised by 
the finite element method. Domain decomposition 
techniques can be used at the level of the problem 
and/or of any physical system. Domain decomposition 
offers an efficient approach for large-scale problems or 
complex geometrical configurations ([1]-[10]). This 
method in the context of the finite element programs 
leads to a substantial reduction of the computing 
resources as the time of the processor.  
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