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Abstract: We discuss features extracted from a wavelet packet decomposition for image classification. Statistical
features computed from wavelet packet coefficients are compared to structural features which are derived from an
image dependent wavelet packet decomposition subband structure. Primary application area is the classification
of pit pattern structures in zoom-endoscopic colon imagery, while results are also compared to the outcome of a
classical texture classification application.
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1 Introduction

Colonoscopy is a medical procedure, which enables
a physician to examine the colon’s inside appearance.
The ability of taking pictures from inside the colon fa-
cilitates analysis of images or video sequences with the
assistance of computers. This work describes a novel
approach to computer-assisted classification of specific
tumorous lesions (see [7] for previous work).

To get detailed images, a special endoscope - a
magnifying endoscope - is used. A magnifying endo-
scope represents a significant advance in colonoscopic
diagnosis as it provides images which are up to 150-
fold magnified. This magnification is possible through
an individually adjustable lens. Images taken with this
type of endoscope are very detailed as they uncover the
fine surface structure of the mucosa as well as small le-
sions. To visually enhance the structure of the mucosa,
and therefore the structure of a potentially tumorous le-
sion, a common procedure is to spray indigo carmine or
metyhlen blue onto the mucosa.

In this work we compare the use of wavelet packet-
based structural features to traditional statistical wavelet
features for an automated classification of mucosa im-
agery acquired by a magnifying colonoscope corre-
sponding to different types of lesions. In Section 2, we
review the classification of pit patterns of the colonic
mucosa. Section 3 describes the classification approach
and first gives an overview and extension of the tradi-
tional statistical wavelet-based features. In Section 3.2
we describe the alternative structural features used in
more detail. Experimental results and configuration de-
tails are presented and discussed in Section 4. Section
5 concludes the paper.

2 Pit Pattern Classification

Polyps of the colon are a frequent finding and are usu-
ally divided into metaplastic, adenomatous, and malig-
nant. As resection of all polyps is time-consuming, it is
imperative that those polyps which warrant endoscopic
resection can be distinguished: polypectomy of meta-
plastic lesions is unnecessary and removal of invasive
cancer may be hazardous. For these reasons, assessing
the nature of lesions at the time of colonoscopy is im-
portant.

Diagnosis of tumorous lesions by endoscopy is al-
ways based on some sort of staging, which is a method
used to evaluate the progress of cancer in a patient and
to see to what extent a tumorous lesion has spread to
other parts of the body. Staging is also very important
for a physician to choose the right treatment of the col-
orectal cancer according to the respective stage. A re-
cent classification system, based on so-called pit pat-
terns of the colonic mucosa, was originally reported by
Kudo et al. [4].

As illustrated in figure 1 this classification differ-
entiates between five main types according to the mu-
cosal surface of the colon. The higher the type number
the higher is the risk of a lesion to be malignant: It has
been suggested that type I and II pattern are characteris-
tic of non-neoplastic lesions, type III and IV are found
on adenomatous polyps, and type V are strongly sug-
gestive of invasive carcinoma.

While lesions of type I and II are benign, repre-
senting the normal mucosa or hyperplastic tissue, and in
fact are nontumorous, lesions of type III to V in contrast
represent lesions which are malignant. Lesions of type I
and II can be grouped into non-neoplastic lesions, while
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Figure 1: Pit pattern classification according to Kudo et
al.

lesions of type III to V can be grouped into neoplastic
lesions. Thus a coarser grouping of lesions into two in-
stead of six classes is also possible. Using a magnifying
colonoscope together with indigo carmine dye spray-
ing, the mucosal crypt pattern on the surface of colonic
lesions can be observed [4]. Several studies found a
good correlation between the mucosal pit pattern and
the histological findings, where especially techniques
using magnifying colonoscopes led to excellent results
[5, 10]

Pit type Characteristics
I roundish pits which designate a normal

mucosa
II stellar or papillary pits

III S small roundish or tubular pits, which
are smaller than the pits of type I

III L roundish or tubular pits, which
are larger than the pits of type I

IV branch-like or gyrus-like pits
V non-structured pits

Table 1: The characteristics of the different pit pattern
types.

As depicted in figure 1 pit pattern types I to IV can
be characterized fairly well, while type V is a com-
position of unstructured pits. Table 1 contains a short
overview of the main characteristics of the different pit
pattern types.

Although at a first glance this classification scheme
seems to be straightforward and easy to be applied, it
needs some experience and exercising to achieve fairly
good results. Correct diagnosis very much relies on the
experience of the endoscopist as the interpretation of pit
patterns may be challenging [9]. Therefore, a computer-
based decision support system would be a valuable help
for a physician to provide more reliable on-line diagno-
sis based on colonoscopy only instead of being forced
to wait for the histopathological specimen analysis for
custom treatment.

3 Wavelet Packet Classification

If a computer program has to discriminate between dif-
ferent classes of images some sort of classification al-
gorithm has to be applied to the training data during
the training phase. During the subsequent classification
of an unknown image, the formerly trained classifica-
tion algorithm is applied to the new, unknown image
and tries to classify it correctly. A classification pro-
cess mainly consist of two parts: the extraction of rel-
evant features from images and the classification based
on these features. In this work we rely on the discrete
wavelet packet transform (DWP) [13] as a preprocess-
ing stage to extract relevant features.

3.1 Statistical Features

In previous work [7] we have already presented re-
sults using two classical feature sets generated from the
DWP. The DWP transform domain contains the pyrami-
dal wavelet transform (WT) as a subset the subbands of
which are used to extract the corresponding first type of
feature vector. Possible features computed are based on
the coefficients in the subbands, e.g. the Energy, Loga-
rithm of energy, Variance, Entropy or the l-Norm.

Local discriminant bases (LDB) [12] is the second
type of feature vectors considered in previous work.
Contrasting to the previous technique this method is
already based on a feature extraction scheme which
is highly focused on discrimination between different
classes. Here, a wavelet packet basis is constructed
which is optimal to discriminate between images of dif-
ferent classes. Once this basis has been identified all
training images are decomposed into this basis. The re-
sulting subbands are then used in the subsequent feature
extraction step.

In the following we introduce two new ways to ex-
tract statistical features from the DWP domain. Both
rely on the best-basis algorithm [3] which decomposes
a given image into an optimal wavelet packet basis ac-
cording to a specified cost function (e.g. like Loga-
rithm of energy, Entropy, Lp-Norm and the Threshold
cost function). The resulting best basis subband struc-
ture usually concentrates the energy of the image in an
optimal way.

The Best-basis method (BB) decomposes each im-
age in the training set into an optimal wavelet packet
basis with respect to the chosen wavelet family. The re-
sulting subbands are then used to extract features from.
Since however the resulting decomposition structures
are different among the images, we employ a voting
procedure, which assures, that the feature vectors for
the different images are based on the same subbands
and that the subband ordering within the feature vec-
tors is the same. After all training images are decom-
posed into their respective best basis subband structure,
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we count the occurrence of each subband of a fully de-
composed DWP decomposition quadtree in the set of
all training images’ best basis subband structures. The
subbands used to extract features from (also for the im-
ages to be subsequently classified) are those with the
highest occurrence count.

The Best-basis centroid (BBC) method also decom-
poses each image in the training set into an optimal
wavelet packet basis according to the best basis algo-
rithm. Subsequently, a common decomposition struc-
ture is determined, a so-called centroid, into which all
images are being subsequently decomposed and which
is used to extract features from. This centroid is ob-
tained by determining the subband structure which has
the smallest average distance to all best-basis decompo-
sition trees of the training image set according to some
quadtree distance metric (see next subsection for an ex-
ample).

3.2 Structural Features

While the features employed in the previous section are
based on wavelet coefficients’ statistics, this section in-
troduces two feature extraction schemes which use the
decomposition subband structures resulting from the
best basis algorithm as features.

To be able to use the decomposition structures to
create feature vectors we need to compare different sub-
band structures and assess their amount of difference.
For this purpose, we introduce the concept of distinctive
numerical labels of nodes in a decomposition quadtree,
so-called unique node values. Using the unique node
values of a decomposition tree for a given image we are
able to create a feature vector. For example, the unique
node value ui for vertex vi in the decomposition tree
can be computed as

ui =

M−1
∑

j=1

5jpt with pt ∈ {1, 2, 3, 4}

where j is the indicator of the decomposition level in
the quadtree, M the level of vertex vi, and pt determines
the type of the node (whether it is lower left, lower right,
upper left, or upper right child of its parent node).

3.2.1 Unique Node Distance (BBS)

The resulting feature vectors cannot be compared using
classical metrics due to their different vector length and
different positions of corresponding unique node values
caused by intermediate vertices. To ensure, that the fea-
ture vectors among all images contain the same node
positions, for each node present in a tree a zero is in-
serted into the feature vectors for those images, which
do not contain the according node in their decompo-
sition structures. This process of equalizing the fea-

ture vectors in length and in terms of the node positions
present is illustrated in figure 2.

(a) original feature vectors (b) equalized feature vectors

Figure 2: Illustration of the feature vector equalization
for unique node values feature vectors.

In figure 2(a) we see feature vectors for some im-
ages 1 to n. As we notice, each of these feature vec-
tors contains a feature vector entry (unique node value
in this context), which is not present in the other fea-
ture vectors (denoted by v, w, x and y in the shaded
boxes). The resulting feature vectors after equalization
are shown in figure 2(b).

After the equalization, we are able to use the feature
vectors in conjunction with any metric and the classi-
fiers mentioned in Section 3.3.

A possible metric used to calculate distances be-
tween feature vectors is a weighted version of the Eu-
clidean distance metric

D(f, g) =
n

∑

i=1

(

fi

w
(f)
i

−
gi

w
(g)
i

)2

(1)

where f and g are the feature vectors, w(f) and w(g)

are weighting vectors associated with f and g, respec-
tively and n is the length of f and g. The weighting
vectors may be derived from the decomposition level of
the node or from the cost information of the subbands
the feature vectors have been composed from.

3.2.2 Tree Distance (TD)

Just like it is done in the BBS method, all images in the
training set are decomposed to their respective best ba-
sis decomposition trees according to a chosen wavelet
family and cost function. Unlike in BBS, we do not aim
at applying a general metric to equalized feature vectors
but want to develop a custom tree distance metric.

In order to calculate the distance between two ar-
bitrary quadtrees Ta and Tb, we first create two sets of
the unique node values contained in each of the trees
Ua and Ub. Then the unique node values, which are
contained in either the set Ua or the set Ub only, are
summed up:

d(Ta, Tb) =

∑

N xi

y
(2)

with
xi ∈ (Ua \ Ub) ∪ (Ub \ Ua)
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where N denotes the number of elements xi contained
only in one of the two sets Ua or Ub and y denotes the
sum over all elements contained in the set Ua ∪ Ub.

It is obvious, that for equal trees the sets U1 and U2

contain the same elements and the distance therefore is
0. By dividing the distance by the value y we addition-
ally introduce an upper limit of 1 to the distance.

Another property of this metric is that differences
between two quadtrees at nodes near the root node
(lower tree levels) contribute more to the distance, while
differences at higher tree levels have a much lower im-
pact on the resulting distance. This is due to the fact
that the unique node values used are created in a way,
which ensures that they get smaller down the tree.

3.3 Classification

The k-NN classifier is one of the simplest classification
algorithms. Classification is done by finding the k clos-
est neighbours to an input feature vector x in the feature
space according to some distance metric. The unknown
input vector x is then assigned to the class to which the
majority of the k nearest neighbours belongs to.

The SVM classifier, further described in [8, 2], is
another, more recent technique for data classification,
which has already been used to classify texture using
wavelet features successfully [11]. The basic idea be-
hind Support Vector Machines (SVM) is to construct
classifying hyperplanes which are optimal for separa-
tion of given data.

The Bayes classifier [6] is a probabilistic classifier
based on the Bayes theorem. This classifier assigns
each unknown image to that class, to which the image
belongs most probably or which causes minimal costs
in respect to some cost function. This is done by apply-
ing the commonly used maximum a posteriori decision
rule (MAP decision rule). The MAP decision rule uti-
lizes the Bayes theorem to maximize the a posteriori
probability and this way the most probable class for a
given (unknown) image is determined.

4 Experiments

4.1 Settings

In our experiments we use 484 images acquired in
2005 and 2006 at the Department of Gastroenterology
and Hepatology (Medical University of Vienna) using a
zoomcolonoscope (Olympus Evis Exera CF-Q160ZI/L)
with a magnification factor set to 150. Lesions found
during colonoscopy have been examined after applica-
tion of dye-spraying with indigocarmine as routinely
performed in colonoscopy. Biopsies or mucosal resec-
tion have been performed in order to get a histopatho-
logical diagnosis. Biopsies have been taken from type
I, II, and type V lesions, as those lesions need not to

be removed or cannot be removed endoscopically. Type
III and IV lesions have been removed endoscopically.
Out of all acquired images, histopathological classifica-
tion resulted in 198 non-neoplastic and 286 neoplastic
cases. The detailed classification results, which are used
as ground truth for our experiments, are shown in Table
2.

Pit Type 2 cls. I II
6 cls. I II IIIS IIIL IV V

Images 126 72 18 62 146 60

Table 2: Number of images per class used in experi-
ments

Using leave-one-out cross-validation, 483 out of
484 images are used as training set. The remaining im-
age is then classified. This process is repeated for each
single image.

To be able to compare the classification perfor-
mance of the methods presented in this paper with
other texture databases as well, we carried out addi-
tional tests using the Outex image database [1]. Table
3 shows the number of images per class (the respec-
tive classes are composed of images of the types Can-
vas002, Carpet002, Canvas011, Canvas032, Carpet009,
and Tile006) used throughout the tests carried out.

Class 1 2 3 4 5 6
2 classes 180 180
6 classes 180 180 180 180 180 180

Table 3: Details about the Outex images used

For classification, we employ colour channels sep-
arately and the Y-channel and show the best results
encountered. The same is true for the actual features
derived from wavelet subbands (several are tested and
only the best result is shown).

4.2 Results

4.2.1 Pit Pattern Images

Table 4 shows the results we obtained using the sta-
tistical features described in Section 3 to classify the
Pit-Pattern images. In table 5 we see the results of the
structural features presented in Section 3.2. All tables
display the percentage of correctly classified images for
each class and overall.

It is interesting to note that within each statistical
technique, k-NN classification delivers the worst results
and Bayes classification the best. This is not the case
for the structural BBS technique, where SVM clearly
gives the best result. When comparing the top results,
the statistical features are clearly superior to structural
features in the case of 2 classes with 84% correctly
classified (WT, Bayes) vs. 73% (BBS, SVM). In the 6
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Pit Type I II IIIS IIIL IV V Total
LOCAL DISCRIMINANT BASES

k-NN, 2C 66 83 76
k-NN, 6C 69 42 28 45 57 10 49
SVM, 2C 65 89 79
SVM, 6C 65 51 0 50 64 48 56
Bayes, 2C 73 86 81
Bayes, 6C 67 49 0 65 55 55 56

BEST BASIS METHOD
k-NN, 2C 42 76 62
k-NN, 6C 52 18 0 42 53 0 38
SVM, 2C 56 81 71
SVM, 6C 59 43 0 47 53 17 46
Bayes, 2C 71 84 79
Bayes, 6C 63 29 39 65 43 57 50

BEST BASIS CENTROID METHOD
k-NN, 2C 70 76 73
k-NN, 6C 54 35 11 45 42 43 43
SVM, 2C 60 90 78
SVM, 6C 61 47 11 39 51 38 49
Bayes, 2C 77 87 83
Bayes, 6C 68 54 6 68 53 62 58

PYRAMIDAL WAVELET TRANSFORM
k-NN, 2C 56 71 65
k-NN, 6C 59 32 0 27 47 22 40
SVM, 2C 63 85 76
SVM, 6C 63 26 0 8 73 30 47
Bayes, 2C 77 88 84
Bayes, 6C 68 60 6 71 48 65 58

Table 4: Percentage of correctly classified Pit-Pattern
images using statistical features.

classes case, the top results are almost identical for sta-
tistical and structural features. On average, structural
features cannot compete with the statistical ones. How-
ever, there are rare configurations where structural fea-
tures are superior to statistical ones, e.g. comparing BB
to BBS using SVM or k-NN classification. Therefore, it
is of high importance to choose the right configuration
of feature and classifier employed.

Comparing within the statistical features, the BB
approach performs clearly worst and LDB is best. BBC
provides good results for all classifiers, while WT gives
poor results for k-NN classification. Concerning struc-
tural features, TD is not competitive at all – this tech-
nique delivers the worst results overall.

4.2.2 Outex Images

The results obtained by carrying out our comparative
tests using the Outex image database using the statisti-
cal features are shown in table 6. Here, we only display
the best (LDB) and worst (BB) techniques. In table 7
we see the results obtained using the structural features.

In the 2 classes case, all types of statistical features
achieve a classification rate of 100% with all three types
of classifiers. LDB exhibits this excellent result also for

Pit Type I II IIIS IIIL IV V Total
UNIQUE NODE VALUES (BBS)

k-NN, 2C 47 79 66
k-NN, 6C 53 31 0 44 52 15 42
SVM, 2C 73 73 73
SVM, 6C 100 0 0 3 98 0 56
Bayes, 2C 53 75 66
Bayes, 6C 94 0 0 3 10 22 31

TREE DISTANCE (TD)
k-NN, 2C 62 46 52
k-NN, 6C 72 0 0 10 44 0 33

Table 5: Percentage of correctly classified Pit-Pattern
images using structural features.

Class 1 2 3 4 5 6 Total
LOCAL DISCRIMINANT BASES

k-NN, 2C 100 100 100
k-NN, 6C 100 100 100 100 100 100 100
SVM, 2C 100 100 100
SVM, 6C 100 100 100 100 99 100 99
Bayes, 2C 100 100 100
Bayes, 6C 100 100 100 100 100 100 100

BEST BASIS METHOD
k-NN, 2C 100 100 100
k-NN, 6C 97 92 100 89 87 91 93
SVM, 2C 100 100 100
SVM, 6C 98 98 100 98 94 93 97
Bayes, 2C 100 100 100
Bayes, 6C 100 100 100 100 98 99 99

Table 6: Percentage of correctly classified Outex im-
ages using statistical features.

the 6 classes case (except for the SVM classifier where
99% are obtained). The BB method is clearly inferior in
the 6 classes case, still resulting in 93% and more cor-
rectly classified images. Similar to the pit pattern im-
ages, k-NN gives worst results with BB and the Bayes
classifier even results in 99% correctness for BB in the
6 classes case.

A very different situation is seen with the structural
classifiers. Again, we do not observe the best results for
the Bayes classifier, but contrasting to the pit pattern im-
ages here k-NN classification provides the best results
with 100% correctly classified images in the 2 classes
case and 94% in the 6 classes case (which is slightly
better than the BB result with k-NN, which is the worst
BB result, though). Overall, the results of the structural
features are clearly inferior as compared to the statisti-
cal features.

The excellent results of the statistical features us-
ing the Bayes classifier (for Outex as well as for pit
pattern images) suggests the wavelet coefficient statis-
tics distribution closely following the normal distribu-
tion whereas obviously this is not the case for the dis-
tribution of the structural features’ vectors.
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Class 1 2 3 4 5 6 Total
UNIQUE NODE VALUES (BBS)

k-NN, 2C 100 100 100
k-NN, 6C 96 99 99 83 92 97 94
SVM, 2C 91 87 89
SVM, 6C 65 70 58 59 46 27 54
Bayes, 2C 92 87 90
Bayes, 6C 57 63 83 74 50 47 63

TREE DISTANCES (TD)
k-NN, 2C 100 99 99
k-NN, 6C 91 82 78 53 45 53 67

Table 7: Percentage of correctly classified Outex im-
ages using structural features.

5 Conclusion

In this work we compare the use of statistical features
and structural features for image classification, both
types of features are derived from the wavelet packet
domain.

The classification results of both wavelet feature
types depend strongly on the classification technique
applied, where Bayes classification provides clearly
the best results in case of statistical features for both
zoom-endoscopic images as well as a texture database.
For structural features, the top performing classification
technique varies, but Bayes classification is never the
best one.

Overall, coefficient distribution based statistical
wavelet features turn out to be superior as compared to
structural features using the best basis decomposition
subband structure itself as feature. However, this is not
true for each combination of feature extraction and clas-
sification technique employed. Therefore, the selection
of feature extraction and classifier needs to be jointly
optimized in order to achieve optimal classification ac-
curacy.
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