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Abstract —The present contribution aims at identifying the nonlinear dynamic underlying sleep disorder for patients 
with high circulatory risk. The proposed approach is based on scalar adaptive chaos control, which allows not only 
the selection of unstable trajectories from chaotic regimes, but also estimating relevant parameters, within the limits 
of the low dimensional model chosen to demonstrate the principle.  
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1   Introduction 
Recent research confirms the existence of chaotic 
regimes in many biomedical domains [1-3]. Joints, 
muscular, respiratory and brain diseases are just a 
few examples of situations when chaotic behavior 
might be dangerous to the health and life of a 
patient. 

This paper deals with modeling and parameter 
identification of sleep disorder nonlinear dynamics 
especially for patients with high cardio-vascular risk. 

Sleep disorders are common and obstructive 
sleep apnea (OSA) is the predominant type. OSA is 
the repetitive complete obstruction (apnea) or partial 
obstruction (hypopnea) of the collapsible part of the 
upper airway during sleep. The syndrome is 
associated with excessive daytime sleepiness or 
chronic fatigue. Several studies have shown that 
OSA is associated with hypertension, stroke and 
other cardiovascular disorders; some of them being 
associated with cardiovascular disease. As a 
consequence of OSA the cardiovascular disease may 
go worse, being even capable of determining the 
death of the patient during the sleep. This has 
generated increasing interest in recent years in sleep 
studies. 

Our work aims to find some feasible solutions to 
the problem of early detection of cardiovascular 
disorder episodes with high risk. 

The approach taken in our research is to start 
from a nonlinear chaotic prototype system, benefit 

from its rich oscillatory dynamics, and chose the 
desired trajectory by means of adaptive chaos 
control. Taking into account that the biomedical data 
is available in digital form, all systems are naturally 
discrete-time. The chaotic prototype system is 
chosen as an additive nonlinear discrete system 
(ANDS), due to their universality and ease of design 
[4-6]. Instead of using a feed-forward identifying 
scheme, such as the chaos synchronization approach 
[7], we use a feed-back adaptive control method. 

The next section presents some aspects of ANDS 
and the method used throughout our research. 
Section three illustrates the obtained results by 
means of some of the simulation results performed. 
Conclusions, discussion and further research are 
briefly treated in the last section. 

 
2   ANDS Chaos Control 
The proposed control topology is based on applying 
linear control around a nonlinear prototype system. 
The linear gain is varied during time, using a 
gradient type learning algorithm that aims at 
minimizing the error between the output of the 
prototype system and the input signal. The resulting 
block diagram is presented in figure 4. 

To achieve the desired modeling performance, we 
chose the particular prototype system in the form of 
state-space ANDS type. Such a system is built in a 
feedback loop, connecting a state transition matrix 
around the algebraic nonlinear function as shown in 
figure 2. Additivity is achieved by using a particular 
algebraic function, namely the symbolic residue 
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function, r(x), depicted in figure 1 and given by the 
equation (1):  

)round()r( xxx −=     (1) 
By denoting the symbolic quotient function by 

k(x), as given by equation (2): 
)round()k( xx =     (2) 

We can conclude that any real number, x, can be 
decomposed as a sum of the two symbolic functions, 
as given in equation (3): 

)r()k( xxx +=     (3) 
The highlighted additivity property is useful to 

easily build the blocks of the system, obtain some 
properties similar to linear systems (such as additive 
convolution [4] and additive Z transform [6]), while 
still allowing complex dynamics, such as chaos, as 
demonstrated in [5]. 
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Fig. 1. The residue algebraic nonlinear function used in 

the chaotic system. 

The chaotic prototype system is designed to have 
the state equations: 

])[]1[r(]1[ kkk exAx ++⋅=+   (4) 
The state transition matrix, A, is chosen to have 

at least one eigenvalue outside the unit circle, to 
ensure chaotic behavior. The modulus of the largest 
eigenvalue is chosen only slightly larger than unit to 
have a positive but small Lyapounov exponent for 
the chaotic prototype system. The state vector and 
the input vector are of the same dimension to ensure 
matrix-vector operation compatibility in equation, 
without the need of a supplementary matrix 
coefficient for dimension adaptation. 
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Fig. 2. Block diagram of the chaotic system. 

The gradient type learning algorithm, that aims at 
minimizing the error between the output of the 
prototype system and the input signal, is developed 
as a vector LMS-type structure: 
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  (4) 

This leads to the block diagram in figure 3, 
showing a nonlinear adaptive structure, performing 
in a vector-matrix environment. 
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Fig. 3. Block diagram of the learning algorithm gradient 

type system. 

The elementary blocks developed in the previous, 
must now be included in the global block diagram in 
figure 4. 
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Fig. 4. Block diagram of the adaptive control system. 

 
3   Simulation Results 
In depth simulations were made to verify the desired 
behavior of the proposed system. Polysomnographic 
signals, taken from sleep apnea patients, were used 
in signal processing, up to four simultaneous traces. 
The results presented in the following, use two ECG 
signals, presented in figure 5.  

The convergence of the proposed algorithm was 
verified for a large range of learning constants. 
Expectedly, the higher the value of the learning 
constant, the faster the convergence of the algorithm 
but the noisier the final weight traces. These 
phenomena are presented in the two examples in 
figure 6. The first graph is depicted for a large value 
of the learning constant (μ = 1000) while the second 
is obtained for a smaller one (μ = 100). 
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As presented in figure 7, convergence of the 
weight values, lead to smaller learning error. The 
results in fig. 7 are taken for large learning constant 
(μ = 1000) and the larger ripple in the weight value 
evolution lead to larger final error. Although most of 
the time, the average error value is smaller than 10-4, 
when abrupt slopes are present in the input signal, 
short time spikes appear in the error trace too, with 
peak values of 5*10-3. 
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Fig. 5. Example of ECG signals for a patient with sleep 

apnea and cardiac arrhythmia. 
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Fig. 6. Graphical representation of the time evolution of 
the adapted weights for large learning constant (up) and 

smaller one (down). 
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Fig. 7. Graphical representation of the time evolution of 

the learning error for large learning. 

Unfortunately, the good results obtained till now 
are somewhat dependent on the weight initial 
conditions. Although for most initial condition 
values the algorithm converges, small domains can 
be found, where the starting point does not lead to 
convergence to the desired values. E.g. results in 
figure 8, show that for small, negative initial 
condition on both parameters, the algorithm 
diverges. 
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Fig. 8. Example of the time evolution of the adapted 

weights in the case of lack of convergence. 
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4 Conclusions 
We proposed an adaptive feedback control approach 
for non-linear dynamics identification, parameter 
extraction and modeling for biomedical applications. 
The chaotic behavior of the prototype system allows 
the desired richness of periodic and quasi-periodic 
trajectories. The adaptive control loop selects the 
closest trajectory to the target bio-medical signal, 
also providing a parameter set based on the adapted 
weights.  

We trained our system with selected ECG 
segments annotated by pulmonary and 
cardiovascular disease experts for cardiovascular 
disorders associated with sleep apnea. ECG traces 
were obtained from the Hospital of Pneumology of 
Iasi through polisomnography investigation. 
Arrhythmias are usually associated with the blood 
oxygen desaturation following the apnea or 
hypopnea episodes. 

The obtained simulation results show good 
convergence control but some lack of flexibility 
towards spiky behavior and initial condition 
dependence due to local minima in the performance 
surface. 

Further research is needed to extend the 
dimensionality of the proposed system to achieve 
higher dimension signal processing, as usually 
encountered in sleep apnea analysis. The 
linearization of the performance surface or some 
annealing technique is foreseeable solutions to the 
initial condition dependence of the convergence 
process. Identifying the normal/crisis situation of the 
patient under study by automatically tracking the 
adapted parameters is the final application of the 
reported research. 
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