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Abstract:- In recent years, there has been a notable increase in dengue fever and dengue hemorrhagic 
fever cases in both the very young and in aged adults. Pregnant women with dengue infection had 
been increasingly reported. Many infants have severe and may suffer from complications and even 
death because of difficulties in early diagnosis and improper management. In this study, we present 
the mathematical model for describing the transmission of dengue disease in pregnant and non-
pregnant humans. The different transmission probabilities of dengue disease to pregnancy and non-
pregnancy are considered. We analyze our model by dynamical analysis method. The numerical 
simulations are shown to confirm our results. The basic reproductive rate of the disease is discussed.  
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1 Introduction 
Mathematical modeling of disease transmission has a 
long history. In 1911, an epidemiology model for 
malaria transmission was developed by Ross [1]. 
Mac Donald [2] later added a layer of biological 
realism to the model by providing careful 
interpretation and estimation of the parameter, which 
should go into the model. Mc Kenzie [3] has pointed 
out that the utility of a model depends not as much 
on how well a mathematical job has been 
accomplished but on how well a particular question 
has been translated. If one is interested in disease 
transmission, it is imperative that the model describes 
as closely as possible the characteristics of the 
disease being transmitted. Dengue disease is a 
mosquito-borne disease caused by dengue virus. Four 
serotypes of dengue virus exist, namely DEN1, 
DEN2, DEN3 and DEN4. Infection by one type of 
the virus confirms permanent immunity to further 
infections by the infecting strain and temporary 
immunity to the others. The disease is usually found 
in tropical region of the world. This disease can be 
transmitted to human by biting of infected Aedes 
Aegypti mosquitoes [4]. DF is characterized by the 
rapid development of the illness that may last from 
five to seven days with headache, joint and muscle 
pain and a rash [5]. The illness is characterized by a 
sudden onset of fever, intense headache, joint and 
muscle pain, loss of appetite, vomiting and diarrhea, 
and rash. Dengue hemorrhagic fever(DHF) is the 
severe form of dengue fever. It is usually the result of  

 
a second infection in a person having pre-existing 
antibodies to a different stain. DHF is associated with 
loss of appetite, vomiting, high fever, headache and 
abdominal pain. Shock and circulatory failure may 
occur. DF may occur in people of all ages who are 
exposed to infected mosquitoes. DHF is one of the 
emerging viral diseases spreading throughout the 
tropical regions of the world. From its first 
appearance in the Philippines in 1953, it has been 
estimated that there are between 50 and 100 million 
cases per year, with approximately 10,000 infant 
deaths due to this disease [6]. The most dengue 
infections occur during childhood but some adults 
may remain susceptible to infection. About 30 
percent of dengue infection is reported in patients 
more than 15 years old [7]. Some pregnant women 
may also be susceptible to dengue and if they 
experience dengue infection, they can transmit the 
dengue viruses to their babies. In 1989, the first 5 
reported neonates of vertical dengue infection were 
born in Tahiti [8]. Since then, there have been 12 
additional cases reported from Thailand, Malaysia 
and France [8-15]. Esteva and Vargas [16-18] 
introduced a mathematical model to provide a 
qualitative assessment for the problem. They used the 
Susceptible-Infected-Recovered (SIR) model for 
describing the transmission of dengue disease. For 
better understanding of the dengue transmission in 
pregnant and non-pregnant humans, the mathematical 
model is presented in this study. 
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2   Mathematical Model 
We proposed a new model to study the transmission 
of dengue virus infection by introducing pregnant 
and non-pregnant classes  into the SIR model [16]. 
The model is based on the following 
assumptions.The total human populations have 
constant sizes which are classified into two groups, 
pregnancy and non-pregnancy. Each group has 
constant size and it is divided into three classes, 
susceptible, infectious and recovered human 
populations.The vector population is divided into two 
groups, susceptible and infectious mosquitoes, with 
the mosquitoes never recover from the infection. 
The model considers the rate of change for eight 
variables: 

PHS  is the number of susceptibles pregnancy, 

PHI  is the number of infectives pregnancy, 

PHR  is the number of immunes pregnancy, 

nHS  is the number of susceptibles non- 
pregnancy, 

nHI  is the number of infectives non-pregnancy, 

nHR  is the number of immunes non-pregnancy, 

VS  is the number of susceptibles vector, 

VI  is the number of infectives vector . 
The rates of change for each class of pregnancy,  
non-pregnancy and vector populations are given by; 

( )  HP
H H H H H VP P n P

H

d S bN S S I
dt N m

μ αβ= − −
+

, 

 ( ) ,HP
H H V H H Hn P P

H

d I bS I I
dt N m

α β μ γ= − +
+

 

H P
H H H HP P

d R
I R

d t
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( )  Hn
H H H H H Vn n n n
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H H V H H Hn n n

H

d I bS I I
dt N m
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H n
H H H Hn n
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dt N m
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l  

where  HN  is the number of the human population, 
 

PHN is the number of the pregnancy, 

nHN is the number of the non-pregnancy, 

VN   is the number of the vector, 
A     is the constant recruitment rate of                  
        mosquitoes, 

Hμ   is the average constant death  
        rate of the human population, 

Vμ   is the average constant death  
        rate of vector, 
m    is the number of alternative   
       hosts available as blood sources, 

PHβ is the transmission probability  
        from vector to pregnancy, 

nHβ is the transmission probability  
        from vector to non-pregnancy, 
α    is the ratio between  
       transmission probability from  
       vector to pregnancy and    
       transmission probability from  
       vector to non-pregnancy, 

Hγ  is the constant rate at which an  
       infected human recovers, 
 b   is the average number of biting  
      per mosquito per day, 
p   is the percentage of the human  

      to be pregnant, 
PVβ is the transmission probability  

     from pregnancy  to vector, 
nVβ is the transmission probability  

      from non-pregnancy to vector, 
l    is the ratio between transmission  
      probability from pregnancy  
      to vector and the transmission  
      probability from non-pregnancy     
      to vector, 

with the three conditions 
P P P PH H H HN S I R= + + , 

n n n nH H H HN S I R= + +  and V V VN S I= + .  (2) 
The total population remains constant. Thus, there is 
no change of rate for each population. These indicate 

that 0,HdN
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= 0,PHdN
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These give 
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with the three conditions 
1P P PS I R+ + = , 1n n nS I R+ + =       and  

1 (4 )V VS I+ =
 
3 Analysis of the Mathematical Model 
 
3.1 Analytical Results 
The equilibrium points are found by setting the right 
side of (3) equal to zero. This gives 

1) The disease free equilibrium point  
1 (1,0,1,0,0)E =  and 

2) The endemic disease equilibrium point   
* * * * *

2 ( , , , , )P P n n VE S I S I I=  where 
* 1
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I
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where 
2
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0 3 1 2

2 2 2

, (10)a M M M
β β β

α α
β β β

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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1 1 1 1
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2 2 2 2

,a M M M M M M
αβ β β αβ
β β β β

= + + + − −  (11) 

2 1 2 3a M M M= + + ,    (12) 
such  that 1 ( )H HN mβ μ= + , 2 ( )

nH VA bβ αβ μ= , 

3 ( )H HN mβ γ= + ,    (13) 
and  

2
1 1 2n PV HM b Nβ β β= l , 2

2 1 2n nV HM b Nβ β β=  
2

3 1 3 2( )( ) . (14)V HM N mμ β β β= + +
  
 

3.1.1 Disease Free  State 
The stability of each equilibrium point is 
determined from linearizing equations in (3) about 
the equilibrium point examining the eigenvalues of 
the resulting Jacobian matrix. We now consider the 
eigenvalues of the Jacobian matrix at each 
equilibrium point. If all eigenvalues for each 
equilibrium state have negative real parts then that 
equilibrium state is locally stable. The local 
stability of the disease free equilibrium 1E  is 
governed by the matrix 

( )

( )

( )
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0 0 0

0 0 0

0 0 0

0 0 0
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H
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H

H H H V
H
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b bN N
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μ αβ μ

μ γ αβ μ

μ β μ

μ γ β μ

β β μ

⎡ ⎤− −⎢ ⎥+⎢ ⎥
⎢ ⎥

− −⎢ ⎥+⎢ ⎥
⎢ ⎥

− −⎢ ⎥+⎢ ⎥
⎢ ⎥

− −⎢ ⎥
+⎢ ⎥

⎢ ⎥
⎢ ⎥−

+ +⎢ ⎥⎣ ⎦
l

 

                          (15)  
 

The eigenvalues are 
1,3 Hλ μ= − , 2 H Hλ μ γ= − − , 

2
1 1 0

4

4
2

c c c
λ

− − −
= ,

2
1 1 0

5

4
2

c c c
λ

− + −
=   

where  
2

0 [ ] ( / )
n n nH V H V V H H V

H

bc N A
N m

μ μ γ μ β β μ= + −
+

2[ ] ( / ),
n P nV H H V

H

bN A
N m

α β β μ−
+

l  

1 H V Hc μ μ γ= + + . 
It can be seen that 1λ , 2λ , 3λ and 4λ have negative 
real parts. Next, we will check the sign of 
eigenvalues 5λ . 5λ  has negative real part  when 

2
1 0 14c c c− <   or  2 2

1 0 14c c c− < . 
So that    

2[ ] ( / )
n n nH V H V V H H V

H

bN A
N m
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+

 

2[ ] ( / ) 0
n P nV H H V

H

bN A
N m

α β β μ− >
+

l  

or    2 2 1

1 3

( )    1A
M MB

M
β α

β α
+

= < . 

Therefore the disease free equilibrium point is 
locally stable for 1AB < . 

 
3.1.2  Endemic Disease State 
The local stability of the endemic equilibrium 

2E is governed by the matrix 
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where  ( / )
nH V

H

b A
N m

ρ αβ μ=
+

, 

  
n PV H

H

bk N
N m

β=
+

l  and 

  
n nV H

H

bl N
N m

β=
+

. 

For the endemic equilibrium point, 
* * * * *

2 ( , , , , )P P n n VE S I S I I= , the eigenvalues are found by 
solving the characteristic equation 

5 4 3 2
4 3 2 1 0 0d d d d dλ λ λ λ λ+ + + + + = .       (17) 

To determine the local stability of the endemic 
equilibrium point, we need to check the signs of all 
eigenvalues for the endemic equilibrium point. The 
stability of the endemic equilibrium point can be 
determined by using Routh-Hurwitz criteria [19] as 
follows: 
i) 0id >    for 0,1,2,3,4i =  
ii) 2 2

4 3 2 2 4 1d d d d d d> + , 
iii) 

2 2 2 2
4 1 0 4 3 2 2 4 1 0 4 3 2 4 0( )( ) ( ) .d d d d d d d d d d d d d d d− − − > − +

After we check the three conditions above by 
MATHEMATICA, we found that the endemic 
equilibrium point is locally stable for 1AB > . 
The quantity '

A AB B=  is the basic 
reproductive number the disease, it gives the 
average number of secondary patients that one 
patient can produce if introduced into a 
susceptible human. So we can reduce the 
outbreak of dengue disease in the endemic 
region when the basic reproductive number 

'( )AB  is greater than one. 
 
3.2 Numerical Results 
We are interested in the transmission of disease in 
pregnancy and non-pregnancy. The values of the 
parameter used in this study are as follows: 

1/(365 60)Hμ = ×  per day corresponds to a life 
expectancy of 60 years in human. The mean life of 
mosquito is 14 days; (1/14)Vμ =  per day, 1/3=b ; 
one bite provides blood meal for 3 days. The 
recovery rate equals to 1/3 per day. We assume that 

the number of the non-pregnancy is greater than the 
number of the pregnancy and there is no alternative 
host. Thus the ratio α  and l  should be less than 
one. The other parameters are arbitrarily chosen. 
Numerical solutions of (3) are shown in the 
following figures. 
 

 

 

 
 

Fig.1.Numerical solutions of the system (3) 
demonstrate the times series of  

, , , ,P P n n VS I S I I  , respectively, for 1AB >  
with 1/(365 60)Hμ = × day-1, 1/ 3=b day-1 

(1/14)Vμ =  day-1, 0.4=
PHβ , 

0.8=
nHβ , 0.5=α , 1/ 3=Hγ  day-1, 

0.4=
pvβ , 0.8=

nvβ , 0.5=l , 30000,A =  

12.4482AB = ' 3.5282AB = . The fractions of 
populations oscillate to the endemic disease 
equilibrium point. 
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Fig.2. Numerical solutions of the system (3) 

demonstrate the times series of  
, , , ,P P n n VS I S I I , respectively, for 1AB <  

with 1/(365 60)Hμ = ×  day-1, 1/ 3=b  day-1  
(1/14)Vμ =  day-1, 0.4=

PHβ , 
0.8=

nHβ , 0.5=α , 1/ 3=Hγ  day-1, 
0.4=

pvβ , 0.8=
nvβ , 0.5=l , 2000,A =  

100000,HN = 99000
nHN = , 1000=

PHN  

0.829881AB = ' 0.910978AB = . The fractions of 
populations approach to the disease free state. 

 
4   Discussion and Conclusion 
The mathematical model which we analyze in this 
study, the pregnancy, the non-pregnancy and the 
vector population are assumed to be constant size. 
The quantity '

A AB B=  is the basic reproductive 

number of the disease where 2 2 1

1 3

( )
A

M M
B

M
β α

β α
+

=   

2

2

( )( / )
( ) ( )

n n n PH V H H V

V H H H

b N N A
N m

β β α μ
μ μ γ

+
=

+ +

l                         (18) 

      
2 2

2 2

( / ) ( / )
( ) ( ) ( ) ( )

n n n P P PH V H V H V H V

V H H H V H H H

b N A b N A
N m N m

β β μ β β μ
μ μ γ μ μ γ

= +
+ + + +

, 

it represents the average number of secondary cases 
that one case can produce if introduced into a 
susceptible population [16]. The first and second 
terms indicate the number of secondary non-pregnant 
and pregnant cases, respectively. Consider the second 
term, The infective pregnancy introduced into the 
susceptible pregnancy is bitten by  ( / ) 1( )( )

( )
V

H H H

b A
N m

μ
μ γ+ +

 

mosquitoes, a proportion, ( / ) 1( )( )
( )P

V
V

H H H

b A
N m

μ
β

μ γ+ +
, of 

these mosquitoes becomes infectious. One of these 

infectious mosquitoes; pH

V H

Nb
N mμ

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

 will in turn bite. 

Multiplying this number by 
PHβ , we get the number 

of infected pregnancy. The multiplication between 
the number of infected pregnancy and the number of 
infected mosquitoes during the life time of the 
infectious pregnancy obtains the second term of AB .  
The summation of the average number of secondary 
pregnant cases and non-pregnant cases produces the 
value of  AB . Therefore, the geometric mean of these 
quantities, which is equal to '

AB , gives the number of 
secondary infections.  
         Moreover, we consider the time series of 
human and vector populations when the basic 
reproductive numbers are difference. We show in 
fig.3. 

 

 

 

 

 
              (3a)                              (3b) 

Fig.3.Numerical solutions of the system (3) 
demonstrate the times series of  

, , , ,P P n n VS I S I I  , respectively, for 1AB >  
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(3a) 12.4482AB = , The fractions of 
populations oscillate to the endemic disease 
equilibrium point (0.1484882, 0.00011655, 
0.0801983, 0.0001259, 0.00046752) 
(3b) 24.8964AB = , The fractions of 
populations oscillate to the endemic disease 
equilibrium point (0.07709464, 0.0001264, 
0.04009275, 0.0001314, 0.00048802). 

We compare the transmission of this disease for the 
different basic reproductive number. The basic 
reproductive number of the disease for fig.(3a) and 
fig.(3b) equals to 3.5282 and 4.98963 , respectively. 
Periods of the oscillations as the simulations 
approach the endemic equilibrium point are 
estimated by means of the solutions of the linearized 
system, obtain 3 years for fig.(3a) and 2 years for 
fig.(3b).   
        If the basic reproductive rate is higher, this 
means that one case can produce the greater number 
of secondary cases, and then the period of oscillation 
is shorter.The endemic equilibrium point for 
proportion of susceptible pregnancy and non-
pregnancy decrease. The endemic equilibrium points 
for proportions of infective pregnancy, non-
pregnancy and infective vector increase. These 
subsequent behaviors occur since there are enough 
susceptible pregnancy and non-pregnancy to be 
infected from infectious vector. Application of an 
ultra low volume (ULV) amount of insecticides (the 
standard method used to control the spread of dengue 
disease and other arthropod-borne disease) could 
reduce the basic reproductive rate to below one. The 
value of the basic reproductive rate would return to 
the above one value once the application is stopped 
and since the endemic state is locally stable, the 
disease would return. Therefore the eradication 
program would have to be a continuing one. 
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