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Abstract: - In this study, a numerical solution of the Benjamin-Bona-Mahony (BBM) equation, also known as the 
regularized long-wave (RLW) equation, is presented by using the variational iteration method (VIM). Series 
expansions of the numerical approximation are done. The available analytical results and the obtained numerical results 
are compared to see the accuracy of the methods. 
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1 Introduction 
The Benjamin-Bona-Mahony (BBM) equation was first 
introduced by Benjamin et al (1972) to study  many 
problems of mechanical sciences, and it can be stated 
that BBM is a generalized version of the Korteweg-De 
Vries (KdV) equation for shallow water waves. BBM 
can be applicable to drift waves as well as Rossby waves 
in rotating fluids (Meiss and Hurton, 1982). The general 
form of the BBM is given by Zhang et al (2001) for 
generalized long waves.  
 
In the nonlinear partial differential equation form, it can 
be written as 
 

0t x x xxtu u uu uα β δ+ + − =        (1) 
 
where u(x,t) is a function of spatial coordinate x and  
time t, and the subscripts t and x denote partial 
differentiation with respect to t and x. , ,α β δ are 
constants with nonlinear and dispersion coefficients, i.e. 

0β ≠ and 0δ > .   
 
Because of the appearance of the xxtu  term in the 
equation (1), it is not similar to KdV type of evolution 
partial differential equation. 
Initial condition for u is denoted by 
 

( ,0) ( )u x f x=          (2) 
By using a variable coefficient balancing act method, an 
exact solution of the general form of the BBM equation, 
Eq (1), was obtained by Zhang et al (2001). In this study, 
the exact solution will be compared with  a newly 
developed powerful and efficient numerical method, 
VIM.  

 
2 Variational Iteration Method (VIM) 
 
Let consider the differential equation 
 

( )Lu Nu f t+ =           (3) 
 
where L and N are linear and nonlinear operators, 
respectively, and  f(t) is the  inhomogeneous term. In the 
references (4-8), a correction functional for Eq. (3) can 
be written as 

1
0

( ) ( ) ( ( ) ( ) ( ))
t

n n n nu t u t Lu Nu f dλ ξ ξ ξ ξ+ = + + −∫     (4) 

where λ is a  general Lagrange’s multiplier, which can be 
identified optimally via the variational theory, and ũn is a 
restricted variation which means δũn = 0. The successive 
approximations un+1, n >0, of the solution u will be 
readily obtained upon using the determined Lagrangian 
multiplier and any selective function u0. Therefore, the 
solution is given by 

lim nn
u u

→∞
=         (5) 

  
3 Application of VIM and Numerical 

Results 
Considering the BBM equation (Eq. 1), an initial 
condition can be assigned with 1α = , 1β = and 1δ = : 

0t x x xxtu u uu u+ + − = ,  

23( ,0) sec ( / 6)
8

u x h x=    (6) 

 
and the exact solution is given by Zhang et al (2001) as 
in the following form 
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23( , ) ( / 6 9 / 48)
8

u x t Sech x t= −   (7) 

The VIM can be applied to equation (6) in the form 
1( , ) ( , )n nu x t u x t+ =

0

( ( , ) ( , ) ( , ) ( , ))
t

t x x xxtu x u x uu x u x dλ ξ ξ ξ ξ ξ+ + + −∫
       (8) 
where λ yields to –1.One can substitute above λ and use 
the initial approximation as in equation (4) to get the 
successive approximation by the following expressions: 

2
0

3[0] sec ( / 6)
8

u u h x= =    (9a) 

2 2
1

3 1sec ( / 6) sec ( / 6) tanh( / 6)
8 8

u h x t h x x= +

2 811 cosh( / 3)sec ( / 6)
2048

t x h x
+

 43 sec ( / 6) tanh( / 6)
64

t h x x+    (9b) 

2 8
2

2
3 29 sec ( / 6)sec ( / 6)
8 1536

t h xu h x= − −

2 8

2 8

cosh(2 / 3)sec ( / 6)
256

cosh( )sec ( / 6)
1536

t x h x

t x h x
+ −

 

7 3 11sinh( / 2)sec ( / 6) 5 sinh( / 2)sec ( / 6)
384 12288

t x h x t x h x
− +

7

3 11

sec ( / 6)sinh(5 / 6)
1152

7 sec ( / 6)sinh(5 / 6)
73728

t h x x

t h x x
+ +

 

3 11sec ( / 6)sinh(7 / 6)
36864

t h x x
+  

2

4 6

sec ( / 6) tanh( / 6)
8

3 sec ( / 6) tanh( / 6) 49 sec ( / 6) tanh( / 6)
64 1152

t h x x

t h x x t h x x
+ −

3 105 sec ( / 6) tanh( / 6)
4608

t h x x
−    (9c) 

These expressions for u[n] are obtained by using the 
Mathematica software. To illustrate the efficiency of the 
VIM, only first three terms will be used to compare with 
the exact solution. The comparison is given in Table 1, 
for 0<x<1, and for t=0.3 sec. In the figures from 2 to 4, 
the variation of u with its variation both in time and 
space is illustrated to see the obtained approximation 
with the exact one (figure 1). 

 
4 Conclusion 
The numerical solution of the Benjamin-Bona-Mahony 
(BBM) was studied by using a new powerful numerical 
method, variational iteration method. It was observed 
that the use of VIM provided a very good estimation 
when compared to exact values. Even the first three 
terms was enough to get accurate results. The higher 
terms are not required, since it causes a decrease in the 
efficiency of the method. 
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TABLE 1.  Comparison of exact and numerical methods for u(x,t) at time t = 0.3 
x Exact VIM % Error  
0.1 0.37441304809846043  0.37490879457737475  0.132 
0.2 0.37480312882714945  0.3753474930952519  0.145 
0.3 0.3749853519439612  0.37557321401047816  0.157 
0.4 0.3749593128390916  0.37558501409151046  0.167 
0.5 0.3747250693480553  0.3753824958262723  0.175 
0.6 0.3742831414788761  0.3749658146647877  0.182 
0.7 0.3736345089609346  0.3743356821947829  0.188 
0.8 0.37278060663528295  0.3734933651596483  0.191 
0.9 0.37172331772359474  0.3724406803001826  0.193 
1.0 0.3704649650298208  0.37117998507386646  0.193 
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Figure 1. The exact solution of u(x,t) for –5<x<5 and 0<t<2. 
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Figure 2. The VIM solution of u1(x,t) for –5<x<5 and 0<t<2. 
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Figure 3. The VIM solution of u2(x,t) for –5<x<5 and 0<t<2. 
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Figure 4. The VIM solution of u3(x,t) for –5<x<5 and 0<t<2. 

 

 

 

Proceedings of the 6th WSEAS International Conference on Non-Linear Analysis, Non-Linear Systems and Chaos, Arcachon, France, October 13-15, 2007      94


