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Abstract: - Four models of gas and electrostatic plasma adeestwiz ideal gas and adiabatic
gas and ideal plasma and adiabatic plasma. Theskelsnare fluid equations (continuity
,momentum and energy) of gas and electrostaticraagith initial conditions which give rise
to soliton and shock formation and examine the cedfeof the ideal and adiabatic
thermodynamic assumptions, used in each case,eomathematical structures. Analyses of
the gas and plasma hyperbolic Euler ideal/adiabsgstems exhibits shocks, contact and
rarefaction waves and solitons exhibit solutionffedent from each other. Numerical
computations of gas and plasma are derived fromntedasses of high resolution schemes
for hyperbolic systemgH.Nessyahu and E.Tadmor: J.Comput.Phys.87 (1990) 408-463]
which have been successfully deployed in shock ggafion computations reveal and
confirm sharp difference in the two systems andliddiabatic systems.
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1 Introduction

Gas and electrical plasma (ionised gas)
are used widely in the electrical
industry such as power systems, gas
insulated substations (GIS) and the
semiconductor industry [12]. Naldi et
al [12] and Baboolal [2] modelled
electrons and ions in a semiconductor
with  conservation of mass and
momentum equations only. Fang and
Yen [7] modelled electron and ions
with charge conservation using the
FCT Technique.

Mason [14] demonstrated solitons in
plasma from a density hump and Cohn
[6] observed the solitons
experimentally. Biskamp et al [4]
studied shocks but he treated electrons
as a massless Boltzman fluid. This
study is to model and simulate solitons
and discontinuities in adiabatic and
ideal gas and plasma systems and to
demonstrate differences and

similarities in their nonlinear

structures. Modelling the gas enables
understanding of the charges in the
shocks and solitons. The adiabatic and

ideal plasma and gases can be written
in conservation form

6_U+_6F(U):G (1)

ot 0Xx
whereU is the field variableF is the
flux variable andG is the continuous
source term and the system is
hyperbolic i.e. the Jacobian has distinct
eigenvalues. The gas and electrostatic
plasma is Euler in that all the
eigenvectors are real and distinct [8].
The solutions are generated from
Riemann problem of a shock tube using
Rim 3 initial conditions from which
discontinuous solutions were generated
for a heat transport gas systems Pember
[15]. The Riemann shock tube is a
piecewise constant initial data written
as [10]:

u@m:{

U, x<0
U, x>0
)

The Rim3 conditions:
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£,=25u =10 p =10E =32¢

0, =10u, =04 p, =0568E, =15
where o, pandE are the density,
pressure and energy respectively. The

speed of the discontinuity is given by
the Rankine-Hugoniot jump condition

F(UL)_ F(UR) = S(uL _UR)[3

®)
where U, ,Ug and s are left state, right
state and the wave speed respectively
For the Euler system the Riemann
shock tube depicts solutions as a shock,
contact and a smooth rarefaction. A
discontinuous  wave is  shock
(compressive) if it satisfies (3) and
speed relationship i.e.
Ai(UL)>3 >/]i(UR) where A is
the eigenvalue of the Jacobean of F.
The contact discontinuity satisfies the

relations A, (U L ) =S =4 (U R)

and (3). The rarefaction wave satisfies
only A (U L ) <A (U R) and is
considered as a smooth transition.
LeVeque [10] informs us that the shock
and rarefactions are nonlinear
degenerate [(]A p (u).rp (u) %z 0u)

whilst the contact discontinuities are
linear degenerate

0A p (u).rp (u) =00u. It is easy to

verify using mathematica 6.02 software

that gas and plasma system exhibits
distinct eigenvector values and that
shock, contact and rarefaction waves
are present. Furthermore mathematica
verifies that shock and rarefactions are
genuinely nonlinear and the contact is
linear degenerate. The Lax [10]

condition advocates the shock and
contact to satisfy the condition

[ul,uR] is admissible if
A, (u)=zs2 4 (ug). The
rarefaction condition is that
A, (u)<s< A, (ug) 31

For smooth solution or solitons we
consider the initial perturbation

U(x0)=C+Cye (@)

where C,C, are constants [4].

2 Problem Formulation

GAS SYSTEM:
IDEAL GAS: The conserved quantities and fluxes of the
ideal gas system with energy can be written as

0 o
U=lou| F=|p®+p (5).
PE PEU+ pu

The above system is closed bp = (y—l)peThe
Jacobian system is given by

0 1 0

-394 @-pu oyt

2
3 3 2
=0 -pE ~Z{y-D+)E g

(6)
The eigenvalues
are:

A :u,u—\/_y(y_])z(u2 —2E)’u+\/—y(y—1)2(u2 _ZE) @)

To calculate the shock speeds s we use the Rankine-
Hugoniot conditions below:

mp -myp =s(o1 - p2)
(plulz + mj —(p2U§ + pzj =(m -m2) ©®
up(Ep+ p1)-u2(E2 + p2) = s(E1 - E2)

The above system was solved by eliminatifip, P2,

The speeds calculated, = 0.981,1.827,0.650 .we

verify Lax condition on the shock wave only by
calculations below:

)=+ R _]) =22405=182% )=
o W _]) 1148

©
ADIABATIC GAS:
Now we consider the system closed adiabatically by

using the equationpp™ = C. Again we consider Rim
3 conditions with left initial conditions where

P, =10, 0, = 25.SinceP p™ =R, p,” =0.277
where y =14 . Thereforep = 0.277p" .
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P
U=
PE
ol

F=| u2+02770Y (10)

PEU+0.277p"u

The Jacobian matrix is given by

~ 0 1
2m

-—+027p0™ =

Vg " J

—am £
—+027(+np” = +Q27
Jod b+ J

(11)

I3 o o

Yo,

m=,0u
The eigenvalues of the adiabatic
system are given by

A, = %,Az = % ~ 0.52631,/y p 50,

A, =1 4 0.52631,/yp 50
0
(12)

Again using (8) yields
m-my=g0,-)

Emz?hy - Emzmj’ ={m-m)
(gl+027zlyj”1 —(52 +027z:21’j”’2 =dg-2)
4 0

The speeds are given by
$=0.522,1.460,022. The shock

wave satisfies the Lax theorem (not
shown here)

THE 3-FLUID SYSTEM
ELECTROSTATIC EQUATIONS

We set up the system of plasma
equations taking into account
conservation of mass, continuity and
energy.
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IDEAL PLASMA SYSTEM

Continuity:

ane 0

—+—(NgVe)=0 14
ot ax( € e) )

1+ Z(hvi)=0
+ X(n,v,) (15)

9y )+i{(a—l)Ei —%(a—?;) (ny, )2} =enE

ot 0X n;
(17)
Energy:
O dny _ 1 (nov.)’
_®e4 " |(_€&€ —|la- = E
e 2 Lo ) |- eny

(18)

OEi +i{aMEi _%(a_l)[mgﬂ =env,E

E [1)4 n

(19)

The electric field (E) and potential field
(¢) is calculated using

)
0x
(20)
2
6_20: -4y qn =n,—n =SU)
0X k=ei
(21)



The electric field and potential energy
contribute to the source terms in (1)
and it is assume continuous across a
thermodynamic discontinuity. The
variables are respectively

n,,n,v,,v,,m,m,P,P E,E
are electron/ion densities, electron/ion
velocities, mass electron/ion, Pressure
electron/ion and energy electron/ion
respectively. E angt are electric field

and potential respectively. Relative
. m,
mass iRm = —(_E:O.OZ and
m
o =mn, k=ie
Separate blocks for electron and ion

subsystem can be written as the field,
flux and source vectors as follows:

—-eneE
—engveE
0

enE
enjviE

(22)

The Jacobian matrix is given by

(23)
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e O O S
% A R

TR o
zf ;faz ;fa

0 0 1 0

0 0 0 (y;% (%(ri

The eigenvalues for the ideal electron
subsystem are:

e BT, AR

(24)

Using (3) again the system reduces to:
MeiVes ~TeoVep = o)

y1 _}_M_L_l _}_M: Vig —NeoVe
e e e

(e 3Ral |- e 3R |-4Fa -5
(25)

(4&05313—[ 125525—187§ ofkn {25Ey)

(26)
Using mathematica 6.02 speeds have
two complex values and one real value

i.e.5=0424 .

The eigenvalues for the ideal ion
subsystem are:

~Wy-tn -2£0)
2a
~Wy-dinf -2E0)
20
(27)

The eigenvalues are for the ions are
same for the ideal gas system in (8).
Hence the ion shock will also satisfy

A=yu-




the Lax condition.

ADIABATIC PLASMA SYSTEM

Continuity:
%42 (nv)=0
ot ox
(28)
D42 (qv)=0
ot ox
(29)
Momentum:
o n\v> + Fe
o(n,ve) , m ) __enE
ot ox m,
(30)
9 —(nv, )+ 9 nv,’ Rk
ot ox m m
(31)
Energy:
OEe , d(Ee + pe)Ve = —engVeE
ot ox
(32)
OEi  OEi +PiM _ o\ g
ot 0x
(33)

We now close the above equation
system using the adiabatic

conditionp = 0.277p” vyielding the
following system of equations

ne
Neve
Ee
N
njvi
Ei
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nyv

e’'e

vZ+0.277R/™n/

e

n

(E, +0.277RINY

F= .
nv

nv> +0.277n/

)ﬂV
n

(E +0.277ny) 2%

0
—eneE/Rmass
-en v E

e e
0

eniE

eniviE

(34)

The Jacobian matrix is given by

0 0 0 o 0
?4—1@2]{; 'S 0 01 o o
4%@#)@3@# 1( ﬁj o2 0 0o o
A

0 0 0 1 0
0 i%ﬂazz{ 1 Z—Q 0

ol
o o 452 @Zg“} B 1{1 Bi® 74) )

21 R

The eigenvalues for the adiabatic
electron subsystem:

A, =U,,u, 0526 LR/ poY,

u, +0526jR/ ™ g0

(36)
Using (3) on the adiabatic electron
subsystem:

NNy NNy :é(r&_rlz)

NN +02 7Rl —naf, Q2 7R, =, o)

[E,+Q27@R ). E, +027@Rf)vez(:s()Eﬂ—EQ)
37

The speeds are 1.2, 0.799 and -0.713.
The shock speed satisfies the Lax
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condition. S min{ }if s, > 00jj

The eigenvalues for the adiabatic ion

subsystem indicate left and right (Sl S, ;.. : ma>{s }If S, < odjj

shoclavaves. Ootherwise

A =u,u —0526Jyp™ ¥,

u +0526Jyp"Y (41)
(38)

. L. . And where after some simplification:
The adiabatic ion wave will have P

ntl _ —n+l n+l
the same values as the adiabatic gas Auy™ = uj+é uj 1
in (13). 2 2

. :}[anﬂ -ufy _}[Urx}ﬂ — 20 Uy |-
3 Problem Solution 8
/][fn+l fn+l fn+l+fn —2f +f

3.1THE NUMERICAL MODEL s s

To capture the Riemann shock tube :+—t[g(u;‘:ll)—g(u“fll)+ g( J+l) g(u;‘_l)]
waves and solitons in system (1) the 4

NNT numerical scheme [11] was used.

The Nessyahu and Tadmor numerical (42)
scheme [11] as modified in [13]

numerically models shocks and smooth Here again the

solutions of (1) with great accuracy. u, = MM(U'+1_U' u —-u. 1)
The second order formula is given as J J J

follows: (43)

Also useful in our applications is the
more accurate UNO derivative [11]

g+l — 1 n n
U; [UJ+1+2U +Ul, 1_6[ij+1_uxj—1]_ 1
1 Uy :M’\{UJ U +§MMUJ —A, U, U, — Y +Uj—1)’
_|:unl+1 _un,+_ll:| +
I Ui 7Y, _;MMUJH_ZJJ +uj—l’uj+2_2‘lj+l+uj))'
_[g( J+1)+29( ) g( )]
+ E[g(ujnill)"' 29( n+l) g( n+l)] To apply the scheme, which is ir(:rjll%cit

/1 in time, we use the predictor given in

i) (-] - )
u™ =u" +At{g(u”)—& fx"}
(39)

(45)
As in shock calculations we shall
employ the min-mod derivatives [11]:

1
Where the flux derivatives— " are
u™ = MM(au, Aut) um = MM(aurE, Aur) Ax
XJ L at the indicated time levef and can be
evaluated using the MM function or
(40) calculated from the explicit form
of f (u) .

Wh.ere the nonlinear limiter MM is The stability has been demonstrated in
defined by

[13] using Roe’s stability formula. The
linear stability analysis of the NNT
scheme indicates that it should remain
stable under CFL condition



At

m

AN < 0.01 , where /\m is
AX

the spectral radius of the flux Jacobian.
This is stronger condition than that
used in [13] for electrostatic
simulations.

Here AXx= 01 At=0.001 The
CFL value can be calculated as

coFL = 8L 0001

AX 0.1
All boundary conditions were reflective

0
Neumann homogeneous 52 =0)
X

given in [1].
The central difference scheme was
used for the Poisson equation:

Do _2§0m + D1 = AXZSm,m = :LZ,M -1

(46)
The electric field was solved as a
tridiagonal linear system with right
hand side vector

5PS, ~ @, CS,,... S, S, L~ 4 |

(47)
This is solved iteratively due to the
simi implicit scheme in [2].

SOLITON AND SHOCK WAVES
COMPUTATIONS

The initial values for gas equations
generated using (4):

p=10+ e For 40 grids at the
centre
£ =10 Elsewhere

oJ =0 For all grids

£=25+05e For 40 grids at
the centre
& = 25 Elsewhere

The initial values are for the plasma
equations are taken as follows:

n, (x,0)= 1.0+ 20 exd— 05x° ) (n, =ei)

En, (x,0) = 1.0+ 20exp- 05x?), (n, =e,i)
v, =0, (nk =e,i)
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Fig 1 Gas and plasma ideal and adiabatic smooth graphs.In gas graphs
1,2 and 3 represents energy, density and momentum respectively. The
gas CFL valuesare 3x=0.3,5=0.1.In the plasma graphs 1-n+1, 2~n‘,
3-n Vv 4~ny-15~¢ -1.5,6-¢-3.The plasma CFL values are &=0.5 and
&=0.005.
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Concluson

For ideal gas and ideal plasma two solitons travéhe
left and right with equal velocity and equal amydi¢. In
both models a stationary soliton at the centreisbied.
The adiabatic gas and adiabatic plasma yields emgity
solitons with the energy waves showing a negative
growth at the centre. In the adiabatic models @uditend
to travel slower than the ideal models.

The adiabatic shockwaves for both the models etehiti
three Riemann solutions whilst the ideal gas shasles
tend produce oscillations at the contact. The igksima
electron subsystem produces contact discontinaity o
while the ideal ion plasma subsystem producesedet
Riemann solutions.
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