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Abstract: - Four models of gas and electrostatic plasma are studied viz ideal gas and adiabatic 
gas and ideal plasma and adiabatic plasma. These models are fluid equations (continuity 
,momentum and energy) of gas and electrostatic plasma with initial conditions which give rise 
to soliton and shock formation and examine the effects of the ideal and adiabatic 
thermodynamic assumptions, used in each case, on the mathematical structures. Analyses of 
the gas and plasma hyperbolic Euler ideal/adiabatic systems exhibits shocks, contact and 
rarefaction waves and solitons exhibit solutions different from each other. Numerical 
computations of gas and plasma are derived from recent classes of high resolution schemes 
for hyperbolic systems [H.Nessyahu and E.Tadmor: J.Comput.Phys.87 (1990) 408-463] 
which have been successfully deployed in shock propagation computations reveal and 
confirm sharp difference in the two systems and ideal/adiabatic systems.  
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1 Introduction 
Gas and electrical plasma (ionised gas) 
are used widely in the electrical 
industry such as power systems, gas 
insulated substations (GIS) and the 
semiconductor industry [12]. Naldi et 
al [12] and Baboolal [2] modelled 
electrons and ions in a semiconductor 
with conservation of mass and 
momentum equations only. Fang and 
Yen [7] modelled electron and ions 
with charge conservation using the 
FCT Technique.  
Mason [14] demonstrated solitons in 
plasma from a density hump and Cohn 
 [6] observed the solitons  
experimentally. Biskamp et al [4] 
studied shocks but he treated electrons 
as a massless Boltzman fluid. This  
study is to model and simulate solitons 
and discontinuities in adiabatic and 
ideal gas and plasma systems and to  
demonstrate differences and  
similarities in their nonlinear 
structures. Modelling the gas enables 
understanding of the charges in the 
shocks and solitons. The adiabatic and 

ideal plasma and gases can be written 
in conservation form   

( )
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where U  is the field variable, F is the 
flux variable and G  is the continuous 
source term and the system is 
hyperbolic i.e. the Jacobian has distinct 
eigenvalues. The gas and electrostatic 
plasma is Euler in that all the 
eigenvectors are real and distinct [8].   
The solutions are generated from 
Riemann problem of a shock tube using 
Rim 3 initial conditions from which 
discontinuous solutions were generated 
for a heat transport gas systems Pember 
[15]. The Riemann shock tube is a 
piecewise constant initial data written 
as [10]: 
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The Rim3 conditions:  
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25.3,0.1,0.1,5.2 1111 ==== Epuρ

5.1,568.0,4.0,0.1 2222 ==== Epuρ
 where Ep  and ,ρ  are the density, 
pressure and energy respectively. The 
speed of the discontinuity is given by 
the Rankine-Hugoniot jump condition   

( ) ( ) ( )RLRL uusuFuF −=− [3  
    (3) 

where RL uu ,  and s are left state, right 
state and the wave speed respectively 
For the Euler system the Riemann 
shock tube depicts solutions as a shock, 
contact and a smooth rarefaction. A 
discontinuous wave is shock 
(compressive) if it satisfies (3) and  
speed relationship i.e. 

( ) ( )RiiLi UsU λλ >>  where λ  is 

the eigenvalue of the Jacobean of F. 
The contact discontinuity satisfies the  

relations ( ) ( )RiiLi USU λλ ==  

and (3). The rarefaction wave satisfies 

only ( ) ( )RiLi UU λλ <  and is 

considered as a smooth transition. 
LeVeque [10] informs us that the shock 
and rarefactions are nonlinear 

degenerate ( ( ) ( ) uuprup ∀≠∇ 0.λ ) 

whilst the contact discontinuities are 
linear degenerate 

( ) ( ) uuprup ∀=∇ 0.λ . It is easy to 

verify using mathematica 6.02 software 
that gas and plasma system exhibits 
distinct eigenvector values and that 
shock, contact and rarefaction waves 
are present. Furthermore mathematica 
verifies that shock and rarefactions are 
genuinely nonlinear and the contact is 
linear degenerate. The Lax [10] 
condition advocates the shock and 
contact to satisfy the condition  

[ ]RuLu ,  is admissible if  

( ) ( )RpLp usu λλ ≥≥ . The 

 rarefaction condition is that  

( ) ( )RpLp usu λλ <<  [3].  

For smooth solution or solitons we 
consider the initial perturbation 

( ) 25.0
00, xeCCxU −+=   (4) 

where 0,C C  are constants [4].  

 
 

 

2 Problem Formulation 
 
GAS SYSTEM: 
 IDEAL GAS:The conserved quantities and fluxes of the 
ideal gas system with energy can be written as 
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The above system is closed by ( ) ep ργ 1−= The 
Jacobian system is given by  
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The eigenvalues  
are:
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To calculate the shock speeds s we use the Rankine- 
Hugoniot conditions below: 
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The above system was solved by eliminating ,2,2 pm  

The speeds calculated 650.0 ,827.1 ,981.01 =s  .We 
verify Lax condition on the shock wave only by  
calculations below: 
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ADIABATIC GAS: 
Now we consider the system closed adiabatically by 

using the equation Cp =−γρ . Again we consider Rim 
3 conditions with left initial conditions where  

5.2, 0.1 00 == ρP .Since 277.000 == −− γγ ρρ PP

where 4.1=γ . Therefore γρ277.0=p .   
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The Jacobian matrix is given by 

( )
























+++−

+−

+

−

ρ
ρ

ρ
εργ

ρ
ε

ρ
γρ

ρ
γγ

γ

m
m

m

mm

1
2

1
2

2

277.01277.0

0
2

277.0

010

                (11) 
 

um ρ=  

The eigenvalues of the adiabatic 
system are given by  
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Again using (8) yields 
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The speeds are given by 

22.0 ,460.1 ,522.0=s . The shock 
wave satisfies the Lax theorem (not 
shown here) 
THE 3-FLUID SYSTEM 
ELECTROSTATIC     EQUATIONS 
 
We set up the system of plasma 
equations taking into account 
conservation of mass, continuity and 
energy.     

  
 
IDEAL PLASMA SYSTEM 
 
Continuity: 
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Energy: 
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The electric field (E) and potential field 

(φ ) is calculated using  
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The electric field and potential energy 
contribute to the source terms in (1) 
and it is assume continuous across a 
thermodynamic discontinuity. The  
variables are respectively  

ieieieieie EEPPmmvvnn ,,,,,,,,,  

are electron/ion densities, electron/ion 
velocities, mass electron/ion, Pressure 
electron/ion and energy electron/ion 
respectively. E and φ  are electric field 
and potential respectively. Relative 

 mass is
i
e

m m

m
R = =0.02 and 

eiknm kkk ,, ==ρ  

Separate blocks for electron and ion 
subsystem can be written as the field, 
flux and source vectors as follows:  
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The Jacobian matrix is given by  
    
                (23) 
 
 
 
 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )






































−−−+−

−
−

−
−

−−−+−

−−
−

−

2

2
2
2

2
21

2

3

2

2
3
2

3
2122

2

200

1

2

23

2
22

2
23

0

100

00

1

1
2
1

2
11

2

3

1

1
3
1

3
1112

1

1

000
1

1

13

2
12

2
13

000010

0

00

000

0

ρ
γ

ρ
γ

ρ

γ

ρ
γγ

ρ

γ
ρ

γ

ρ

γ

ρ

γ

ρ
γ

ρ

γ

ρ
γγ

ρ

γ

ρ

γ

ρ

γ

mmEm
E

m

mm

mm
mR

Em
mRE

m

mR

mm

 
 
The eigenvalues for the ideal electron 
subsystem are: 
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Using (3) again the system reduces to:  
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Using mathematica 6.02 speeds have 
two complex values and one real value 
i.e.  424.0=s .  
  
The eigenvalues for the ideal ion 
subsystem are: 
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The eigenvalues are for the ions are 
same for the ideal gas system in (8). 
Hence the ion shock will also satisfy 
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the Lax condition. 
   
ADIABATIC PLASMA SYSTEM 
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We now close the above equation 
system using the adiabatic 

condition γρ277.0=p  yielding the 
following system of equations 
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The Jacobian matrix is given by  
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The eigenvalues for the adiabatic 
electron subsystem: 
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Using (3) on the adiabatic electron 
subsystem: 
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The speeds are 1.2, 0.799 and -0.713. 
The shock speed satisfies the Lax 
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condition. 
The eigenvalues for the adiabatic ion 
subsystem indicate left and right 
shockwaves.  

( )

( )15.0

15.0

5261.0

,5261.0,
−

−

+

−=
γ

γ

ργ

ργλ

ii

iiii

u

uu
  

                (38) 
The adiabatic ion wave will have 
the same values as the adiabatic gas 
in (13). 

  
3   Problem Solution 
 
3.1THE NUMERICAL MODEL 

 
To capture the Riemann shock tube 
waves  and solitons in system (1)  the 
NNT numerical scheme [11] was used. 
The Nessyahu and Tadmor numerical 
scheme [11] as modified in [13] 
numerically models shocks and smooth 
solutions of (1) with great accuracy. 
The second order formula is given as 
follows: 
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              (39) 

 
As in shock calculations we shall 
employ the min-mod derivatives [11]: 
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                              (40) 
 
Where the nonlinear limiter MM is 
defined by  
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                (41) 
 
And where after some simplification: 

[ ] [ ]
][

( ) ( ) ( ) ( )[ ]          
4

    

22
2

2
8

1

2

1
    

11
1
1

1
1

11
1

1
11

1

1111

1

2

1
1

2

1
1

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
xj

n
xj

n
xj

n
j

n
j

n

j

n

j

n
j

ugugugug
t

ffffff

uuuuu

uuu

−+
+
−

+
+

−+
+

−
++

+

−+−+

+

−

+

+

+

−+−∆+=

++−++−

−+−−−=

−=∆

λ

    
                (42)
     
Here again the  

( )11 ,MM −+ −−= jjjjxj uuuuu
                (43) 
Also useful in our applications is the 
more accurate UNO derivative [11] 
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             (44) 
To apply the scheme, which is implicit 
in time, we use the predictor given in 
[11]  
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                              (45) 
 

Where the flux derivatives n
xf

x∆
1

 are 

at the indicated time level n and can be 
evaluated using the MM function or 
calculated from the explicit form 

of ( )uf .  
The stability has been demonstrated in 
[13] using Roe’s stability formula. The 
linear stability analysis of the NNT 
scheme indicates that it should remain 
stable under CFL condition 
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01.0≤
∆
∆Λ

x

t
m  , where mΛ  is 

the spectral radius of the flux Jacobian. 
This is stronger condition than that 
used in [13] for electrostatic 
simulations.   
 
Here 0.001t ,1.0 =∆=∆x . The 
CFL value can be calculated as  

01.0
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001.0 ==
∆
∆=

x

t
CFL  

All boundary conditions were reflective 

Neumann homogeneous ( 0=
∂
∂

x

u
) 

given in [1].  
The central difference scheme was 
used for the Poisson equation: 

1,...2,1 ,2 2
11 −=∆=+− +− MmSx mmmm φφφ

     
   (46) 
The electric field was solved as a 
tridiagonal linear system with right 
hand side vector 
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2
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   (47) 
This is solved iteratively due to the 
simi implicit scheme in [2].  
 
SOLITON AND SHOCK WAVES 
COMPUTATIONS 
 
The initial values for gas equations 
generated using (4): 

25.00.1 xe−+=ρ   For 40 grids at the 
centre 

0.1=ρ  Elsewhere 

0=uρ  For all grids 
25.05.05.2 xe−+=ε  For 40 grids at 

the centre 
5.2=ε  Elsewhere 

  
The initial values are for the plasma 
equations are taken as follows:  
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Conclusion 

 
 
 
For ideal gas and ideal plasma two solitons travel to the 
left and right with equal velocity and equal amplitude. In 
both models a stationary soliton at the centre is exhibited.  
The adiabatic gas and adiabatic plasma yields two density 
solitons with the energy waves showing a negative 
growth at the centre. In the adiabatic models solitons tend 
to travel slower than the ideal models.  
The adiabatic shockwaves for both the models exhibits all 
three Riemann solutions whilst the ideal gas shockwaves 
tend produce oscillations at the contact. The ideal plasma 
electron subsystem produces contact discontinuity only 
while the ideal ion plasma subsystem produces all three 
Riemann solutions.. 
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