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Abstract: We propose a network model where network structure can be controlled by an external field which influ-
ences the movement of random walkers. Changes of network structure induced by the external field is detected by
the observation of mean vertex-vertex distance, correlation between adjacent vertices, density of edges, frequency
distribution of vertex degree, and distribution of the shortest path length from each vertex. These changes of net-
work structure can be summarized as a phase diagram. Depending on the mechanism of the linking of vertices
based on local structure of the network, various network structures can be established.
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1 Introduction
With the discovery of the common structure of real
networks and growing awareness of its importance,
numerous mathematical models comprising simple
principles which can describe certain features of real
networks have been proposed. Studies on small world
network model [1] and preferential attachments model
[2] are epoch-making, both of which can reproduce
small-world phenomena and scale-free degree distri-
bution that can be seen commonly in the real world
such as internet structures, biological systems, social
networks, etc [3, 4].

On the other hand, recent studies have revealed
that different systems sometimes have different struc-
tures which stem from their intrinsic characters. For
example, it was found that degree-degree correlation
between adjacent vertices can take positive (assorta-
tive mixing) or negative (disassortative mixing) values
according to the kind of networked system [5]. A class
of intrinsic characters of networked systems should be
originated from the generating behavior of the local
structure of the network. For example, considerations
for connecting newly attached vertices with other ver-
tices which are reachable by following a path can re-
sult in clustering coefficients and degree correlations
commonly seen in real networks [6, 7]. These models
have been proposed with characters of social network
in mind.

In our recent works, we proposed a network evo-
lution model considering the rise and fall of connec-
tions determined by random transports between ele-

ments of a system [8]. In the model, random walk-
ers can move and leave edges behind their traces, the
movements of which conform to local connections in
a network. It has been found that this model can pro-
duce typical properties of complex networks such as
large clustering coefficients, small mean vertex-vertex
distance, and broad type degree distribution. A few
number of vertices with large degree can be realized
intuitively as a consequence of the effect that vertices
with large degree tend to attract random walkers with
its edges and gain new shortcuts to the vertex. How-
ever, properties intrinsic to this model which stem
from random walker movements have not been really
investigated yet and the vertices under consideration
have been only passively waiting for random walkers.

The aim of this paper is to find out if we can
control network structure by controlling local density
of random walkers by using a certain kind of exter-
nal field. This idea is based on the observation that
a diffusion process of random walkers starting from
the same vertices yields time-dependent changes of
the network structure [9] and that vertices with large
degree tend to attract random walkers. The external
field introduced in this paper can control the local den-
sity of random walkers intentionally(Section 3). The
changes of network structure is examined by the cal-
culation of degree distribution, degree correlation, and
vertex-vertex distance distribution (Section 4). Re-
sults obtained by the calculation can be summarized
as a phase diagram (Section 5).

More detailed rules of the model are described as
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follows. Suppose that there are a number of random
walkers in a graph. The movements of random walk-
ers are affected by the field explained in the next sec-
tion. The creation rule of edges is that a vertex where
a walker currently stays and vertices where the walker
has stayed one and two time-steps earlier are newly
linked (or added strength by one if there already exists
an edge there.). The extinction rules of edges specify
that all edges except initially existed edges tend to be
extinct with probability �� per unit time.

The exception rule for the extinction means that
the network maintains initial geographical connec-
tions. Consideration of the geographical structure of
networks is one of the characteristics of our model, al-
though the present paper only takes one-dimensional
lattice as initial lattice for easy calculation. Selection
of other initial lattices (for example, two-dimensional
squared lattice) will lead to results different to those
in this paper. It should be also noted that the move-
ment of random walkers expresses special type of
transports, as the transports do not exhibit birth and
death and the movement of random walker is always
restricted by its last movement.

2 Description of External Field
In order to describe an external field, let us intro-
duce a potential energy function ������ defined on
each vertices, where index ��� means a distance mea-
sured in an initial regular lattice from the origin. Note
that ��� does not mean the shortest path length from
the origin in the evolved network. We assume that
transition probabilities of random walkers have dif-
ferences proportional to a force term ��������� �
�������������� � �����, where ���� and ���� are dis-
tances corresponding to a vertex where the walker cur-
rently stays and a vertex where the walker can reach
in the next time-step, respectively. In other words, the
transition probability ���� of random walkers from a
vertex � to ���� �� is given by

���� �

���
��

�� � ������ ��� �������������� � �����
for ���� �� ����

�� for ���� � ����
(1)

where �� is determined by a normalization.
If the initial network is a one-dimensional lat-

tice with a constant lattice period and ������ gen-
erates a uniform attractive force to the origin like
������ � � ���, then the first row of (1) can be sim-
plified as ���� � �� � � . Furthermore, if vertex �
is linked to � vertices with potential higher than �,
linked to 	 vertices with potential lower than �, and
linked to 
 vertices with the same potential as �, the

normalization condition of ���� yields the next for-
mula,

���� �

���
��

�� � �� � 	���� � � for ���� � ��� �
�� � �� � 	���� � � for ����  ��� �

�� � �� � 	���� for ���� � ��� ��
(2)

where � denotes degree of vertex � (� � � �	� 
).
If �� � �� � 	���� � �  � in (2), it is treated as �
and other probabilities are renormalized.

In the following sections, network formed by
movements of random walkers following the transi-
tion rule of (2) is investigated. All calculations pre-
sented in this paper are carried out for a case of num-
ber of walkers � � ��. The number of walkers di-
rectly affects the increase rate of new edges per time,
but may not cause a large qualitative change of the
results.

3 Effects of External Field on Move-
ments of Random Walkers

In this section, movements of a random walker mod-
ulated by the external field are examined and com-
pared to a case without an external field. First, Figure
1 presents three samples of the movement of random
walkers, which indicate typical behavior of the move-
ments.

Figure 1: Typical examples of random walker’s move-
ment. The conditions are (a) �� � ����, � � �����,
(b) �� � ����, � � ����, and (c) �� � ����, � � ���.

Figure 1 (a) presents a case for a low field, in
which walkers are slowly attracted to the origin and
form a region where the walkers stationary exist but
the walkers can easily escape from the region. On the
other hand, the walkers illustrated in Figure 1 (b) are
nearly confined in a certain region where the walk-
ers can move freely. However the boundary fluctuates
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with time. Further increase in the intensity of the field
make the boundary of the region hard (see Figure 1
(c)). In this stage, the walker cannot go beyond a cer-
tain point.

For cases where movements of random walkers
do not generate new links, which means �� is �,
the movements can be investigated analytically. In
this case, the transition probability is simplified as
���� � ����� , because all vertices always have de-
gree �. In this case, the probability can be expressed
by the following equation,

������� � �
�

�
������������

�

�
����������� (3)

where the probability of walkers visiting the vertex �
at time � is denoted as ����� and the condition � � �
is assumed. To obtain equilibrium values of �����, let
us substitute � ��� for �����, where the function ����
does not depend on � and assumed to be symmetrical
with respect to the origin � � �. Then (3) becomes

� � �
�

�
� �������� � ���� � �

�

�
� ��������� (4)

By solving (4) the equilibrium probability � ���� is ob-
tained as

���� � �
�

�
� �

�

�
� �

�������
�

�
� �

�

�
� �

���� �
�

�
� �

�

�
� �

�� (5)
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Figure 2: Frequency distribution of visits of random
walkers to vertices. Calculations were carried out for
movements of ��� ��� steps after � � ���� ��� when
�� � ����. (a) � � �����. (b) � � ����. (c) � � ���.
These conditions corresponds to Figure 1.

The analytical spatial distributions of random
walkers for cases �� � � are compared with observed
data for cases of �� � ���� in Figure 2. Their dif-
ferences indicate the effect of creation of edges by

random walkers. A noticeable feature in the figure is
reversal of width of the region where the walker can
move due to an increase in the field. When low field is
applied, walkers gathered by an external field produce
further cohesion of the walkers (see Figure 2 (a) and
(b)). This cohesion is considered to originate from
the restricted movement of walkers by edges made by
themselves. On the other hand, a high field case illus-
trated in Figure 2 (c) shows an area where the walker
can exist at �� � ���� wider than at �� � �. In
this case, random walkers when �� � ���� can move
along many shortcuts made by themselves, which do
not exist when �� � �.

Those results demonstrate examples of a relation
between random walker’s movements and structure of
the formed network. Another evident example is the
fact that vertices not visited by walkers never gain new
edges. Even vertices where random walkers stayed
once may lose their edges. In the next section, re-
sults of further investigation on the changes of net-
work structure are discussed.

4 Network Structure Induced by the
External Field

In this section, changes of network structure induced
by the external field are determined by the mean
vertex-vertex distances, correlation between adjacent
vertices, density of edges, frequency distribution of
vertex degree, and distribution of the shortest path
length from each vertex.
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Figure 3: Mean distances between vertices with edges
created by random walker’s movement. Graphs after
���� ��� time steps were considered.

Figure 3 and Figure 4 presents changes of mean
vertex-vertex distances, degree-degree correlation,
and degree-clustering strength between adjacent ver-
tices with respect to the external field � . In this sec-
tion, note that calculations were limited on vertices
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Figure 4: Degree-degree correlation and degree-
clustering strength between adjacent vertices. Con-
sidered graphs are same as that in Figure 3.

that were incident to at least three edges, a part of
which is created by the passing of random walkers.
Large mean distance found in low field is attributable
to a dispersed structure of the network by frequent es-
capes from random walker from the central network,
which can be seen in Figure 1 (a). A point to be noted
is that the field intensity indicating sudden reduction
of the mean distance (Figure 3) is corresponding to
an field that indicates inversion of the sign of corre-
lation (see Figure 4). In our model, negative degree-
degree correlation between adjacent vertices has been
found after introducing external fields, while positive
degree-degree correlation can be ordinary observed.

10
-3

10
-2

10
-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

External field

E
dg
e 
D
en
si
ty

p
d
 = 0. 15

Figure 5: Edge-density 	���� with respect to � ,
where 	 and � denote number of edges by random
walkers and number of vertices with degree more than
three. The value is an average of the time interval
�	� ���� �  ���� ���.

Figure 5 shows changes in the edge-density with
respect to � , where edge-density means a ratio of the
number of edges to the number of all pair of vertices
under consideration. The edge-density indicates sud-
den increase at a certain value of � which corresponds

to the change from the fluctuation boundary of a graph
to a hard boundary of graph as can be seen in Figure 2
(b) and (c). In other words, the network transits from
a low density state of edges to a high density state of
edges like a nearly complete graph.

The changes of network structure can be also
found by the observation of degree distribution. In
Figure 6 degree distributions are presented, each of
which corresponds to three types of network structure
discussed above. In Figure 6 (a) a large part of vertices
only have a few incident edges, while a small part of
vertices have a large degree in comparison. In Figure
6 (b) the number of vertices with a few incident edges
is seen to decrease. However, amore important obser-
vation is that the maximum degree is identical to the
number of vertices subtracted by one. In other words,
vertices around the center of attraction are linked to all
the other vertices that random walkers can visit. This
structure is the reason for the negative degree-degree
correlation mentioned above, for vertices with large
degree are surely joined to other vertices with small
degree. Finally, Figure 6 (c) indicates a formation of
a nearly complete graph.
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Figure 6: Degree distributions calculated for graphs
after passing sufficient large times when �� � ����.
(a) � � �����. (b) � � ����. (c) � � ���
. � de-
notes number of vertices with degree more than three.

A more detailed structure can be found from the
observation of the distribution of the shortest path
length from each vertex. When the field � is small,
each vertex have various distances to all the other ver-
tices (see Figure 7). In this case, a positive degree-
degree correlation was observed. In Figure 8, how-
ever, it can be observed that not only are pairs of ver-
tices more or less connected by a small path length but
there is a particular area in which vertices are linked to
all the other vertices. That is a coexistence of degree
rich area and other areas. This structure can be found
commonly when negative degree-degree correlation is
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observed.
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Figure 7: Observed distribution of the shortest path
length from each vertex around the center of attraction
for the case �� � ���� and � � �����.

0

1

2

3

4

5 0

5

10

15

20

25

30

35

0

20

40

Vertex site

Distance

N
um
be
r 
of
 p
ai
rs

Origin

p
d
 = 0. 15

f = 0. 02

Figure 8: Observed distribution of the shortest path
length from each vertex around the center of attraction
for the case �� � ���� and � � ����. The origin
means a center of attractive force. Vertices around the
origin are directly linked to almost all other vertices.

5 Phase diagram
According to the observation in the preceding sec-
tions, three phases of network structure can be found,
each of which are unstable graphs with rare breakup;
a connected graph formed by edges created by ran-
dom walkers where the coexistence of a degree rich
area and others area can be found, and graph of high
density of edges with hard boundary. Graphs of high
density of edges with hard boundary can be easily
detected by observing the behavior of the boundary.
Transition from an unstable graph to connected graph
by the created edges were formally-verified by the ob-
servation of signs of degree-degree correlation. Figure

9 is a phase diagram obtained by this method in � ���
space.
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Figure 9: Phase diagram. The circles indicates a phase
of unstable graphs. The triangle indicates a connected
graph by created edges. The square indicates a graph
with hard boundary. This result was obtained by only
one observation, so statistical uncertainty is ignored.

The figure shows that the formed networks for
small �� are sensitive to the external field. This re-
sult is consistent with our previous observation that
networks formed by random walkers starting from the
same vertex remain in a certain area when �� is suffi-
ciently small (about ��  ����). The phase of unsta-
ble graph with rare breakup is thought to cease to exist
with the reduction of ��. On the other hand, determi-
nation of the most probable phase for each condition
becomes difficult as �� tends to become large. This is
because in the large �� region in Figure 9, squares and
triangles appear to overlap. Under these conditions,
sudden transition from a graph with hard boundary to
a graph with time fluctuated boundary can be found
in extended observations of the movement of random
walkers.

6 Conclusion
This paper explains a network model where the net-
work was formed by random walker’s movement and
an external field that influences the movement of ran-
dom walkers. The investigation are carried out for a
case where the initial graph is one-dimensional lattice
and the force on random walkers is constant. Three
types of network structures induced by the external
field can be found; namely unstable graphs with rare
breakup, connected graph with time fluctuated bound-
ary, and graph of high density of edges with hard
boundary. The unstable graphs with rare breakup
spread over a smaller range than width of the prob-
ability distribution of random walkers without cre-
ation edges, but the graph with hard boundary can be
spread wider. These changes of network structure can
be determined by the following observation; sudden
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reduction of the mean vertex-vertex distance, inver-
sion of the signs of correlation between adjacent ver-
tices, changes in the density of edges, and changes
in the degree distribution. The inversion of sign of
correlation can be interpreted by the coexistence of
degree rich area around the center of attractive force
and other areas, for vertices in the degree rich area
are directly linked to all the other vertices with small
degree. In our model, negative degree-degree correla-
tion between adjacent vertices has been found after in-
troducing external fields, while positive degree-degree
correlation can be ordinary observed.

It is an important point that the mechanism of the
linking of vertices based on the local structure of the
network can produce various structures of network.
When vertices only passively wait for visits by ran-
dom walkers, it is natural that large clustering coeffi-
cients and positive degree-degree correlations are ob-
served, for vertices with large degree tend to attract
random walkers. Wandering of random walkers in a
certain area can lead to large clustering coefficients.
In this study, it was found that an active attraction by
a vertex can produce contrasting results to the case
without a field, that is negative degree-degree corre-
lation which indicates existence of a part of vertices
with overwhelming number of incident edges.

However, our calculation was limited to one-
dimensional case where the random walker is gener-
ally hard to be spread because of the edges made by
themselves. It should be noticed that the movement of
random walkers is strongly dependent on the dimen-
sion of initial lattice. It may be interesting problem
to consider other dimensions and other definitions of
external field.
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