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Abstract: - The paper presents the most important features of damping in the case of an ultra-lightweight 
sandwich structure starting from the dampings-, dynamic Young moduli- and Poisson ratio determination for 
every lamina. The structure’s architecture is based on two twill weave carbon fabric/epoxy resin skins and an 
expanded polystyrene (EPS) core. At the dynamic analysis of fiber reinforced composite materials, a so called 
concept of complex moduli will be used in which the elastic constants will be replaced through their 
viscoelastic correspondences. The mechanical modeling is based on the correspondence principle of linear 
viscoelasticity theory. Testing scheme allows specimens to be put in one side fixed connection and subjected 
at bending oscillations in normal conditions: 23°C, 50% relative air humidity. Dampings, rigidities and 
compliances of the sandwich structure are computed. 
 
Key-Words: - Polymer matrix composites, Sandwich composite structure, Expanded polystyrene core, 
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1   Introduction 
Polymer matrix composites have been used 
increasingly in applications in aeronautics, in 
transportations, in automotive industry, in machine-
tools construction, robotics, etc., where high 
dynamic loaded parts are needed. To avoid 
dangerous oscillating loadings, the designer of a 
fiber reinforced composite structure has the 
possibility to choose the materials couples, fibers 
orientation and plies succession, to improve 
significantly the damping of the respective structure. 
     The aim of the paper is to determine the most 
important features of damping in the case of an 
ultra-lightweight sandwich composite structure 
starting from the dampings-, dynamic Young 
moduli- and Poisson ratio determination for every 
lamina. The mechanical modeling is based on the 
correspondence principle of linear viscoelastic 
theory, see for instance the papers [1], [2], [3]. 
 
 
2   The theoretical approach 
In technique, the damping is usually defined as the 
decrease of oscillations, in which the mechanical 
energy contained in the system is converted into 
heat. This dissipation process which occurs at the 
interior of materials is called material’s damping.  

When a composite material is subjected to a 
sinusoidal varying stress in which the strain is also 
sinusoidal, the angular frequency is retarded in 
phase by an angle δ, retardation which takes place 
due to viscoelastic behavior of the matrix. The 
introduction of material’s damping in the conditions 
of elastic deformations, occurs under the assumption 
of harmonic stresses and strains. 
     If we choose the abscissa as the time axis where 
the strain reaches its maximum, the strain and stress 
can be written as a function of time: 
 

tcosωεε 0= ,     (1) 
( )δωσσ += tcos0 .    (2) 

 
In the analysis of harmonic systems is more 
convenient to write the stress function as a complex 
quantity σ* which presents a real and an imaginary 
part [4]: 
 

tsinitcos '''* ωσωσσ 00 += ,   (3) 
 
where '

0σ  and ''
0σ  can be expressed as following: 

 
δσσ cos'

00 = ,     (4) 
δσσ sin''

00 = .     (5) 
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Representing the ratios of stresses '
0σ  and ''

0σ  to ε0, 
a dynamic or “storage” Young modulus and a “loss” 
modulus can be defined: 
 

0

0

ε
σ '

'E = ,     (6) 

0

0

ε
σ ''

''E = .     (7) 

 
According to equations (4) and (5), the ratio 
between the loss Young modulus and the dynamic 
modulus defines the material’s damping: 
 

dtan
E
E

'

''

'

''
=== δ

σ
σ

0

0 .    (8) 

 
It is also convenient to express the harmonic stress 
and strain in the form of an exponential function: 
 

ti** e ωσσ ⋅= 0 ,     (9) 
ti** e ωεε ⋅= 0 .               (10) 

 
Now, the complex Young modulus can be written as 
following: 
 

*

*
*E

ε
σ= .               (11) 

 
Taking into account the assumptions of linear 
viscoelasticity theory, the following material’s law 
can be defined [4]: 
 

( ) ( ) *'*'''*** diEEiEE εεεσ ⋅⋅+=⋅⋅+=⋅= 1 .   (12) 
 
For the equation (12), Niederstadt has presented a 
special resonance method suitable for small 
amplitudes, where the specimen was subjected at 
bending- respective torsion oscillations [4]. 
According to the resonance diagram of a glass fiber 
reinforced lamina, the first three eigenfrequencies at 
bending, fn,b, and first eigenfrequency at torsion, f1,t, 
were determined. 
     To determine the dynamic Young modulus, E’, 
and the dynamic shear modulus, G’, the motion 
equations for bending, w (x,t), and torsion, θ (x,t) 
were analyzed. In the case of a rectangular cross 
section specimen with one side fixed connection, the 
following equations for bending are [4]: 
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with the eigenvalue equation: 
 

01 =⋅+ nn coscosh ββ .              (16) 
 
For torsion [4]: 
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nT

T
T f

fd Δ
= .               (19) 

 
The dampings db and dT can be determined from the 
halve value domains Δf of the resonance peaks. 
 
2.1 The sandwich structure 
The sandwich structure taken into account to 
accomplish the damping analysis presents two 
carbon/epoxy skins reinforced with a 0,3 kg/m2 twill 
weave fabric and an expanded polystyrene (EPS) 9 
mm thick core with a density of 30 kg/m3. The final 
thickness of the structure is 10 mm (fig. 1). 
     The carbon-fiber fabric used in this structure is a 
high rigidity one, that presents a so-called twill 
weave. The main feature of this weave is that the 
warp and the weft threads are crossed in a 
programmed order and frequency, to obtain a flat 
appearance (fig. 2). In order to accomplish the 
damping analysis, an equivalence model of the twill 
weave fabric is presented in fig. 3. The skins were 
impregnated under vacuum with epoxy resin and 
sticked to the core. 
     The data regarding the architecture of the 
sandwich structure are: structure’s thickness: ts = 10 
mm; skins plies number: N = 2; thickness of each 
ply: t’1…4 = 0,175 mm; skins thickness: tskin = 0.35 
mm; core thickness: h = 9 mm; fibers disposal angle 
of each ply: α1, 3 = 90°, α2, 4 = 0°; fibers volume 
fraction of each ply: φ1…4 = 56%. 
     The data regarding the structure features: skins 
reinforcement: HM carbon fibers; fabric type: twill 
weave; fibers specific weight: 0,3 kg/m2; matrix 
type: epoxy resin; core type: expanded polystyrene; 
core density: ρcore = 30 kg/m3; core Young’s 
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modulus: Ecore = 30 MPa; core Poisson’s ratio: υcore 
= 0,35; core shear modulus: Gcore = 11 MPa; fiber 
Young’s modulus in longitudinal direction: EF║ = 
540 GPa; fiber Young’s modulus in transverse 
direction: EF┴ = 27 GPa; fiber Poisson’s ratio: υF = 
0,3; fiber shear modulus: GF = 10,38 GPa; matrix 
Young’s modulus: EM = 3,5 GPa; matrix Poisson’s 
ratio: υM = 0,34; matrix shear modulus: GM= 1,42 
GPa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The sandwich composite structure 
 

 
 
Fig. 2. The architecture of carbon/epoxy twill weave 

fabric skins 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. The structure’s equivalence model 

Regarding the dynamic behavior of the structure, we 
will consider the free, linear vibration of a 
mechanical system, which have a damped motion 
presented in fig. 4. Here, R is the force given by the 
damper, c represents the damping coefficient and k 
is the spring constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Model of a free, linear, damped vibration [5] 
 
According to the model, the fundamental equation 
of dynamics for a rigid body can be expressed as 
following [5]: 
 

•••
⋅−⋅−=⋅ xcxkxm .              (20) 

 
Equation (20) can be written under the form: 
 

0=⋅+⋅+
•••

x
m
kx

m
cx ,              (21) 

 
or: 
 

02 2 =⋅+⋅+
•••

xpxx α ,              (22) 
 
with the notations: 
 

22 p
m
k;

m
c == α .              (23) 

The differential equation (22) is linear, 
homogeneous with constant coefficients. The 
characteristic equation: 
 

02 22 =++ prr α ,              (24) 
 
presents the roots: 
 

22 pr −±−= αα .              (25) 
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In the case that α < p, the roots are complex. With 
the notation α2 – p2 = - β2, the general solution of the 
differential equation (22) can be under the form [5]: 
 

( )tsinCtcosCex t ββα
21 += − .             (26) 

 
Since the expression from brackets can be put under 
the form a·cos(βt – φ), the equation (26) can be 
written in the following manner: 
 

( )ϕβα −⋅= − tcoseax t .              (27) 
 
Equation (27) represents a vibration modulated in 
amplitude and the motion is shown in fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Diagram of a vibration modulated in 
amplitude [5] 

 
 
3   Dynamic analysis 
In the followings, we will consider exclusive linear 
damping mechanisms, linear elastic behavior of the 
reinforcement and marked linear viscoelasticity of 
the matrix [6]. 
We consider that the specimen is put in one side 
fixed connection and subjected at bending 
oscillations (normal conditions: 23°C, 50% relative 
air humidity), see the scheme presented in fig. 6. 
     We consider also that the composite lamina 
behaves as a homogeneous continuum with 
anisotropic, linear viscoelastic properties. 
     Generally, at the damping analysis of fiber 
reinforced composite materials, a so called concept 
of complex moduli will be used in which the elastic 
constants will be replaced through their viscoelastic 
correspondences [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Testing scheme of the sandwich composite 
structure 

 
3.1 Micromechanics of lamina’s damping  
A lamina reinforced with continuous, parallel fibers 
embedded in matrix is considered. To describe the 
viscoelastic features of an orthotropic lamina, two 
coordinates axes systems will be considered (fig. 7): 
the global coordinates system (x-y-z) and the local 
coordinates system (║- ┴ - z). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Defining the coordinates axes of a lamina 
 
For the analysis of micromechanical lamina 
behavior, the prism model described by Tsai [9] has 
been used. So, the dynamic modulus along the fibers 
direction can be computed from the mixture rule as 
following: 
 

( )ϕϕ −⋅+⋅= 1'
M

'
IIF

'
II EEE .             (28) 

 
Perpendicular to fibers direction, the dynamic 
modulus presented by Niederstadt [4], as a function 
of fibers- and matrix dynamic moduli as well as the 
fibers- and matrix dampings, can be used: 
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For the damping of unidirectional reinforced lamina, 
the computing relations given by Saravanos and 
Chamis [10], starting from the cylinder model 
presented by Tsai [9], can be used: 
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The index F describes the fibers, index M is used for 
matrix, φ represents the fibers volume fraction and 
υM is the Poisson ratio for matrix. 
 
3.2 Dampings, rigidities and compliances of 

an orthotropic lamina 
The viscoelastic material’s law according to the 
concept of complex moduli, for an orthotropic 
lamina, can be written as following: 
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Expressing the complex stresses as a function of 
complex strains, we obtain: 
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For the fiber reinforced polymer matrix composites, 
assuming that the dampings d2 << 1, the complex 
compliances and rigidities for an unidirectional 
reinforced lamina are: 
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For d2 << 1, according to equations (35) and (36), 
the dynamic compliances can be written in the form: 
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and the dynamic rigidities can be written under the 
following form [4]: 
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According to Niederstadt, the dampings 

ijcd  and 

ijrd  are [4]: 
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3.3 Input data 
The input data taken into account in the damping 
analysis are presented in table 1. 
 
Table 1. Input data 

'
ME  [GPa] 2,6 

Mυ  [-] 0,34 

Md  [%] 1,4 
'

IIFE  [GPa] 226 
'
FE ⊥  [GPa] 16 
'

#FG  [GPa] 43 

IIFd  [%] 0,13 
 
3.4 Results 
The results are presented in the following tables. 
 
Table 2. Micromechanical calculus of the laminas 
damping 

'
IIE  [GPa] 127,7 
⊥'E  [GPa] 5,89 

IId  [%] 0,141 

⊥d  [%] 0,833 

#d  [%] 1,929 
'
MG  [GPa] 0,97 

 
Table 3. Compliances, rigidities, dampings 

'
IIc  [GPa-1] 0,00783 
'
IIc ⊥  [GPa-1] - 0,04923 
'c⊥  [GPa-1] 0,16977 

#c  [GPa-1] 0,18939 

cIId  [%] 0,141 

⊥cIId  [%] - 0,833 

#cd  [%] - 1,929 
'
IIr  [GPa] 128,19 
'
IIr ⊥  [GPa] 1,71 

'r⊥  [GPa] 5,91 
'
#r  [GPa] 5,28 

rIId  [%] 0,143 

⊥rIId  [%] 0,835 

#rd  [%] 1,929 
 
 
4   Conclusions 
The dampings of unidirectional reinforced laminas 
are very different along and transverse to the fibers 
direction. The maximum value of the damping 
seems to be at 45° against the fibers direction. 
     In the future researches the whole sandwich 
structure will be experimentally tested to obtain 
more useful data for the damping analysis of this 
structure with multiple applications. 
 
 
References: 
[1] Ward, I.M., Sweeney, J., An Introduction to the 

Mechanical Properties of Solid Polymers, Wiley, 
2004. 

[2] Haddad, Y.M., Viscoelasticity of Engineering 
Materials, Chapman and Hall, 1994. 

[3] Christensen, R.M., Theory of Viscoelasticity, 
Dover Publications, 1990. 

[4] Niederstadt, G., Ökonomischer und ökologischer 
Leichtbau mit Faserverstärkten Polymeren: 
Gestaltung, Berechnung und Qualifizierungen, 
Expert-Verlag, 1997. 

[5] Voinea, R., Stroe, I.V., Introducere in teoria 
sistemelor dinamice, Editura Academiei 
Române, 2000. 

[6] Achenbach, J.D., A Theory of Elasticity with 
Microstructure for Directionally Reinforced 
Composites, Springer, 1975. 

[7] Schultz, A.B., Tsai, S.W., Measurement of 
Complex Dynamic Moduli for Laminated Fiber-
Reinforced Composites, Springer, 1975. 

[8] Whitney, J.M., Rosen, B.W., Structural Analysis 
of Laminated Anisotropic Plates, Technomic, 
1987. 

[9] Tsai, S.W., Hahn, H.T., Introduction to 
Composite Materials, Technomic, 1980 

[10] Saravanos, D.A., Chamis, C.C., Unified 
Micromechanics of Damping for Composite 
Plies, Journal of Composite Technology and 
Research, 89-1191-CP, 1989. 

Proceedings of the 3rd WSEAS/IASME International Conference on Dynamical Systems and Control, Arcachon, France, October 13-15, 2007      234


