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Abstract: - A new application of continuous wavelet transform to the data analysis of extended x-

ray absorption spectroscopy is presented. The wavelet transform provides not only radial 
distance resolution of the spectra, but resolves also the wave vector space permitting the 
discrimination of atoms by their elemental nature. This resolution is especially important if 
these atoms are at the same distance. The wavelet transform method is applied to a structural 
problem of Zn-Al layered double hydroxides, demonstrating the homogeneity of the metal 
cation distribution in the hydroxide layers. Depending on the specific problem, either the 
well-known Morlet wavelet was used, or a newly developed wavelet, based on theoretical 
EXAFS back scattering functions. 
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1 Introduction to extended x-ray 

absorption spectroscopy 
Extended X-ray absorption fine structure 

(EXAFS) spectroscopy is an element-specific probe 
of the local short range structure of elements in a 
sample. An important advantage of this technique is 
its utility for heterogeneous samples. A wide variety 
of solids and liquids can be examined directly and 
non-destructively. The absorption energies of the 
inner electron shells are usually quite high. 
Therefore the EXAFS technique demands high 
energy tunable X-rays with high flux and brilliance. 
As a result, the experiments are usually done at 
synchrotron radiation facilities. 

Since the pioneering work of Stern, Lytle and 
Sayers to the theory and data analysis of EXAFS 
spectra [1-4], a fundamental step of the EXAFS data 
analysis is the discussion of the Fourier transform 
(FT) of the EXAFS spectra. The modulus of the FT 
enables a first qualitative estimate of how many 
coordination shells at which distances are 
surrounding the absorbing atom. This information is 
necessary for the subsequent numerical EXAFS 
analysis, which is performed by fitting the spectrum 
in either wave vector (k) or Fourier space. The 
photoelectron wave vector k, the incident photon 
energy E and the threshold energy E0 of a particular 
electronic shell of the atom are related by 

 

( )0
2mk E E= −                      (1) 

where  is Plank’s constant and m is the mass of 
the electron. While the absorbing atom is 
unequivocally identified by the energy of the 
absorption edge, the backscattering atoms are 
identified with limited precision (typically 2Z ± ) 
by a fit to the EXAFS equation based on Fermi’s 
Golden Rule 
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where χ(k) is the measured EXAFS spectrum. 
The searched, i. e. fitted, parameters are the 
number of atoms in the ith coordination sphere 
Ni, the average radial distance Ri, and the Debye 
Waller factor σi

2. The functions backscattering 
amplitude Fi(k,R), the sum of the phases of the 
central- and backscattering atoms Ψ(k,R), and 
the mean free path λ(k) are usually calculated by the 
FEFF code [5]. 

FEFF is a commonly used complex computer 
program for ab initio scattering calculations of 
EXAFS spectra using predetermined model clusters 
of atoms. The code yields theoretical scattering 
amplitudes and phases used in the standard XAFS 
analysis codes, as well as the EXAFS spectra for 
each path individually. The identity of the 
backscattering atom is not fitted and has to be 
preselected based on the underlying model. 
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2 Example:  
Layered Double Hydroxides 
Layered double hydroxide (LDH) phases consist 

of layers of edge-sharing metal hydroxide octahedra, 
where up to 1/3 of the divalent cations like Co2+, Ni2+, 
Zn2+ (M2+) are replaced by trivalent Al3+ [6]. Due to 
their low crystallinity and turbostratic layer 
structure, LDH is difficult to determine by x-ray 
diffraction. While EXAFS is much better suited for 
this purpose, the localization of the various cations 
in the structure is complicated by the fact that the 
backscattering wave from Al3+ is masked by 
destructive interference with backscattering waves 
from the heavier M2+ [7,8]. In [9] one finds a 
summary to a variety of applications and problems 
concerning LDH phases.  

 
Fig. 1 Scheme and top view of the Model of the 
octahedral layer of Zn-Al LDH. Zn(OH)6-octahedra 
are shown in green, Al(OH)6-octahedra are shown in 
yellow.  
 

The circles in figure1 mark the first three metal 
shells. Following [10] we assume an even metal 
distribution in the LDH layer, which is in line with 
an even charge distribution. In this case, the first 
metal shell (r ≈ 3.1 Å = RZn-Zn) contains 3 Zn and 3 
Al atoms, the second metal shell (r ≈ 5.3 Å = √3 · 
RZn-Zn), contains 6 Zn atoms, and the third metal shell 
(r ≈ 6.2 Å = 2 · RZn-Zn), contains 3 Zn and 3 Al 
atoms. 

The EXAFS spectrum of a Zn-Al LDH were 
measured at the Rossendorf beamline (ESRF, 
Grenoble) at T = 20 K in a cryostat to reduce 
thermal oscillations. 

 
Fig. 2  k3 weighted Zn K-edge EXAFS spectrum and 
its FT magnitude  of Zn-Al LDH. The fit is shown in 
dotted lines. 
 

The FT magnitude shows four dominant shells, 
which can be assigned to the oxygen coordination 
sphere (O), and to the first, second and third sphere 
of metal (Zn, Al) neighbors (Fig. 1). 

3 Wavelet analysis of the EXAFS 
spectrum of a Zn-Al LDH  
The wavelet transform of the nk  weighted 

EXAFS spectrum is given as [11]:  

W ( , ) 2 ( ) [2 ( )] .nk r r k k r k k dkψ
χ χ ψ

+∞
∗

−∞

′ ′ ′ ′= −∫ (3) 

Thereby the “mother” wavelet function may be 
chosen from the wide class of functions l2 with the 
zero mean condition as the only restriction. 

( )kχ  is the EXAFS signal, and [ ]2 ( ' )r k kψ ∗ −  is 
the complex conjugated wavelet function, translated 
by k  and dilatated by the distance parameter 2r . The 
geometrical meaning of r is explained below. 
 
 
3.1 Wavelet analysis using Morlet wavelets 

 
3.1.1  Morlet wavelets for EXAFS data analysis  

For EXAFS data analysis we have chosen the 
complex Morlet wavelet as mother wavelet [11].  

 
Fig. 3 Real (full line) and imaginary (dashed line) 
part of the Morlet wavelet for η = 5 and σ = 1. 
 
The Morlet wavelet is obtained by taking a complex 
sine wave (like in the Fourier transform), and by 
confining it with a Gaussian. 
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If the Morlet parameters fulfill the condition: 
15ησ , i.e. if one forms a wavelet containing 

many oscillations (the “overview wavelet”), the 
dilatation parameter r of the wavelet transform and 
the distance parameter R of the Fourier transform 
coincide asymptotically. For Morlet parameters in 
the order of 5ησ ≈  (the “detail wavelet”), we 
receive a better resolution concerning the wave 
vector k. 

The choice of the Morlet wavelet was based on 
the fact, that its structure is similar to an EXAFS 
signal with a slowly varying amplitude term and a 
fast oscillating phase term. The parameters η and σ 
are sufficiently descriptive to be adapted easily to 
the present problem, e.g. to identify different 
elements at a given distance of the central atom. 
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Limitations of the resolution of a wavelet 
transform with Morlet wavelets are given by their 
uncertainty (Heisenberg) boxes (see e.g. [12,13]): 

 

 , , .
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r r
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From relation (5) follows that the rk − window 

is narrow in k space for large values of r, and is 
wide for small r. The resolution in r space hence 
decreases with increasing r. On the other hand, for 
large values of the product of the Morlet parameters 
ησ  the uncertainty is large for k and small for r and 
vice versa. Therefore, the resolution in k and r 
critically depends on the selection of the Morlet 
parameters η  and σ . It is marked that the un-
certainties fulfill the relation 1 2k rΔ Δ = . 

 
 

3.1.2  Analysis of the Zn-Al LDH phase using 
 Morlet wavelets 

Figure 4 shows the overview wavelet transform 
of the Zn-Al LDH with a signal weighting of k3. The 
peak at r = 1.7Å corresponds to the oxygen 
coordination shell. The peaks at r = 2.8, 5.0 and 5.8 
Å correspond to the first, second and third metal 
shells with distances corresponding to the FT (see 
figure 2). However, the different Zn and Al back 
scatterer, which are contained in this shells, are not 
resolved along k. 

 
Fig. 4 Overview wavelet transform with Morlet 
parameters η = 15, σ = 2 
 

Figure 5 shows the detailed wavelet transform 
of the first metal shell at r = 2.8 Å with Morlet 
parameters η = 30, σ = 0.184. The wavelet ridge at r 
≈ 2.8 Å is clearly resolved and shows two peaks at 
different k. The peaks demonstrate the existence of 
two different back scatterer in the first metal shell, 

the easier aluminum and the heavier zinc. This result 
is clear, because the resolution conditions (5) for k 
and r are both fulfilled for the first metal shell. 

 

 
Fig. 5 Detail wavelet transform with Morlet 
parameters η = 30, σ = 0.184. 
 

For the second and third metal shell, however, 
the resolution condition is fulfilled either only for r 
in the overview wavelet transform or is fulfilled only 
for k in the detail wavelet, see figure 6. 
 

 
Fig. 6 Overview wavelet transform with Morlet 
parameters η = 30, σ = 1 at top and detail wavelet 
transform with Morlet parameters η = 30, σ = 0.155 
at bottom. 
 

The overview wavelet transform shows two 
shells clearly discriminated in r in complete 
agreement with the Fourier transform (see figure 2), 
while the resolution in k is not sufficient to resolve 
the two types of atoms. In reverse, the detail wavelet 
transform shows two shells clearly discriminated in 
k, but the resolution in r is not sufficient to resolve 
the two different distances. Hence the simultaneous 
resolution in r and k space of the third and fourth 
metal shells is impossible using the Morlet wavelet. 
The presence of both elements, aluminium and zinc, 
in both back scattering shells is proven, but not the 
regular distribution of the metal ions, as it was 
assumed in figure 1. 

To overcome this limitation we have developed 
a new especially adapted mother wavelet, which is 
described in the following sections. 
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3.2 Wavelet analysis using FEFF-Morlet 
wavelets 

 
3.2.1  Generation of FEFF-Morlet wavelets 

When analyzing complex signals with wavelet 
transform, we have to discriminate two cases. In 
case one, neither a basic theory nor a mathematical 
model exist, which could be applied to the process 
under investigation. An example are the EEG signals 
of the human brain, where time-frequency plots of 
the electrical current measured in response to 
different events are treated as fingerprints of these 
events. Even without a basic theory, this wavelet 
method is widely used for medical diagnostics and 
has largely replaced Fourier analysis. In case two, an 
at least rudimentary mathematical model of the 
process under investigation exists. The model or 
parts of it may then be used to construct a wavelet 
specifically adapted to the process. An example is 
seismic oil prospection, where the reflexion of 
pressure waves on single sediment boundaries can 
be modeled, while the description of the complex 
reflexion processes across greater depths of the 
Earth’s crust fails. 

EXAFS spectra can be considered as belonging to 
this second group, since the spectra may be modeled 
by the EXAFS equation, see formula (2). 

In our new model, EXAFS functions for selected 
paths calculated with the FEFF8.2 program [5], form 
the basis for the construction of mother wavelet 
functions. Wavelets, designed in this way, should be 
in good agreement with individual paths of interest, 
which are contained in the experimental spectrum. 
Thus the sensitivity of the wavelet transform for these 
paths is strengthened. In comparison to such real 
functions, complex mother wavelet functions, like 
Morlet or Cauchy wavelets, generate much more 
descriptive plots of magnitude. Thus, taking the FEFF 
designed wavelet as real part, the associated 
imaginary part has to be constructed. The sum of the 
real and the imaginary parts form the FEFF-Morlet 
wavelet. This wavelet is expected to combine the 
accurate characteristics of the theoretical EXAFS 
function with the descriptiveness and simplicity of 
the complex Morlet wavelet. 

We propose to generate FEFF-Morlet mother 
wavelets in five steps. A detailed description of the 
procedure is given in [14]. 

 
1) Modeling a spectrum using a special FEFF path 
and build the envelopes with a spline function, 
2) Adapt the EXAFS oscillations within the 
envelopes to the cosine function, which results in the 
real part of the wavelet, 

3) Add the same function with a phase shift of π/2, 
which results in the imaginary part of the wavelet, 
5) Set the “center of gravity” of the curve to zero. 

 
 

3.2.2  Analysis of the Zn-Al LDH phase using 
FEFF-Morlet wavelets 

Following the proposed procedure four FEFF-
Morlet wavelets have been constructed. They are 
based on the single scattering paths Zn-Al @ 5.3 and 
6.2 Å with the Debye-Waller factor 2 0.0056σ = Å2, 
and Zn-Zn @ 5.3 and 6.2 Å with 2 0.0065σ = Å2. 
The resulting wavelets are shown in Fig. 7. 

 

 
Fig. 7. Real (full) and imaginary (dashed) part of the 
FEFF-Morlet wavelets FM (k) constructed from the 
four model spectra. 
 

Owing to its construction the FEFF-Morlet 
wavelet is the optimal mother wavelet function for a 
specific backscattering atom at a specific distance. The 
information about the optimal distance is contained in 
the FEFF-Morlet wavelet [ ]opt

FM
rψ  itself. Each scaling 

(stretching or shrinking) would mean a decrease of the 
agreement, if the basis model is correct. 

Consequently, the dilatation parameter r is 
replaced by a new scale parameter s if the mother 
wavelet is a function derived from a certain model. 
The definition of s is, that s = 1, if the argument of the 
wavelet is not scaled. It means, if the wavelet 
transform for s = 1 (in a certain region of k) shows a 
maximum, then the signal and the mother wavelet 
function in this k region coincide maximally. 

The wavelet transform (2), depending on the 
translation and scale parameters k and s, then takes the 
form: 

 
( ) ( ) 3 *

[ ], ' ' [ ( ' )] '.
opt

FM
rW k s s k k s k k dkψ

χ χ ψ= −∫ (6) 
 

 
 

Proceedings of the 7th WSEAS International Conference on Wavelet Analysis & Multirate Systems, Arcachon, France, October 13-15, 2007      120



In order to focus the wavelet transform analysis to 
specific distances, the power density function 

( ) 2
( ) ,s W k s dkψ

χ⎡ ⎤Φ = ⎣ ⎦∫  is introduced. The 

calculation of ( )sΦ  is performed by integration over 
the entire k range of the experimental spectrum. 

Now the FEFF-Morlet technique is applied to 
verify the model of Brindley & Kikkawa [10], 
assuming an even metal distribution in the LDH 
layer, in line with an even charge distribution (see 
figure 1). The wavelet transform analysis of the 
second and third metal shell of the LDH spectrum 
will be performed using the four FEFF-Morlet 
wavelet mother functions pictured in figure 7. 

 

 
Fig. 8: Two power density functions Φ(s) of the 
wavelet transform of Zn-Al LDH, performed with the 
adapted FEFF-Morlet wavelets (see text). 

 

 
Fig. 9 Two power density functions Φ(s) of the 
wavelet transform of Zn-Al LDH, performed with the 
adapted FEFF-Morlet wavelets (see text). 

 
For r ≈ 6.2 Å, the analysis of the wavelet 

transforms with the power density function Φ(s) 
shows maxima around s = 1 for Zn and Al, 
confirming that both atoms are present at this distance 
(Fig.11). At a distance of r ≈ 5.3 Å, however, only the 
path involving Zn backscattering shows an additional 
shoulder at s = 1, while the path involving Al does 
not (circle) (Fig. 12). This confirms the model shown 
in Fig. 1. 
 

 
4   Conclusion 

By the example of a Zn-Al LDH it was demon-
strated that the application of the wavelet approach to 
EXAFS data analysis is well suited to distinguish two 
different atoms at similar distances. With the 
previously used Morlet wavelet, it was possible to 

distinguish Zn and Al in the first metal shell (≈ 3.1 Å) 
of the LDH spectrum. However, it was not possible to 
resolve the two more distant shells at 5.3 and 6.2 Å 
simultaneously with respect to wavenumber k 
(element identity) and the distance r. This problem is 
now overcome with the newly developed FEFF-
Morlet wavelet. FEFF-Morlet wavelets were 
individually adapted to resolve the second and third 
metal shell of Zn-Al LDH. We were now able to 
show that the second metal shell contains only Zn, 
and the third metal shell both Zn and Al. 

In this study we made use of the most important 
advantage of the continuous wavelet transform, the 
possibility to permit infinitely many test functions 
from the function class l2. The FEFF-Morlet wavelet 
is a sharper, however also more complicated, 
instrument for EXAFS data analysis than the Morlet 
wavelet.  
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