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Abstract: - The paper presents neuro–adaptive optimal control system with direct application to the aircrafts’ 
control. The system has two neural networks, one with command role function of difference between leading 
system’s output and reference signal and the other which has as training signal the difference between leading 
system state (nonlinear) and the linear model’s state. The command law has an optimal component, which must 
compensate deviations of the linear model from optimal trajectory. For solving adjunct vector equation one 
evaluates exterior perturbation by its influence on deviation of the leading system’s output from reference 
signal. 
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1 Structure of the neuro – adaptive 
optimal control system 
Flying object dynamic A is described by nonlinear 
state equation 

( ) [ ] ,)(,,,),(),(),( 0010 xtxtttttptutxfx =∈=     (1) 
where x  is the state vector ( )1×n , u  - command 
vector ( )1×m  and p  - perturbations vector ( )1×n . 
One presents a control system with a neural network 
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xNN  (fig.1), which is trained in two steps. In the first 
step (initialization one) one obtains neural network’s 
output function of gain matrix’s elements; mx  is 
nonlinear model state of A, and *

IUΔ  - initialization 
command of xNN  (I expresses initialization stage 
and R expresses control stage). 
In the second stage, neural network’s train is made on 
– line because of the variables’ time variations 
(deviation of real trajectory of A from linear model 
trajectory). 
Neural network train is made, for example, using 
optimal criteria based on Pontreaghin maximum 
principle or based on Bellman dynamic propagation 
principle. 
 
 
2 Control system project 
Optimal control law project is a problem which 
consists of command vector Uu∈  determination; it 
leads system (1) from initial state )( 00 txx =  in the 
final state )( 11 txx =  so that criterion [2] 
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takes minimum value on array U . 
Let ** ,ux  be the components on optimal trajectory 
and *

0
*
0 ,ux  -components on reference trajectory; then 

     ).()()(),()()( *
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* tutututxtxtx Δ+=Δ+=          (3) 
In initialization stage of the neural network xNN  
one may use linear control theory for nonlinear 
control system command; linear system is described 
by equation [3] 
             .)(, 00 xtxpDuBxAx Δ=ΔΔ+Δ+Δ=Δ              (4) 
Optimal command *uΔ  determination may be done 
using condition that system passes in the final state so 
that quadratic criterion 
    ( ) ( ) ( ) ( ) ( ) ( )[ ] ττΔτΔ+τΔτΔ+τΔτΔ= ∫

∞

d2
2
1

0

TTT uNxuRuxQxJ     (5) 

takes minimum value; matrix ( )nnQ ×  is symmetric 
and positive semi defined, ( )mmR ×  - nonsingular 
matrix, symmetric and positive defined, ( )mnN ×  - 
symmetric matrix. 
Generally, project problem solving consists in 
optimal command determination [4] 
                           ,***

pt uuu Δ+Δ=Δ                            (6) 
which assures simultaneously optimal amortization 
of dynamic linear processes; it means to assure the 
convergence of  linear model’s trajectory to the 

reference one (component *uΔ ) and compensation of 
exterior perturbations (component *pΔ ) 
Component *uΔ  is expressed as it follows 
                [ ] ,T1* xNPBRxKu Δ+−=Δ−=Δ −               (7) 
where K  is gain matrix and P  the solution of 
algebraic matricidal Riccati equation [3] 
                  .0T1T =+−+ − QPBPBRPAPA                (8) 
In training stage neural network calculates 
command law function of state vector x~  (fig.1). One 
may use a neural network with only a hidden layer; 
equation shaped by a neural network is [5] 
                             [ ] ,T bdWxgVu ++=                       (9) 
where W  is the input weight vector, V  output 
weight vector, d  and b  - the input and output biases 
and g  - sigmoid functions’ vector. 
If in (2) 0),( 11 →txM  and t  is an intermediary 
moment of time, [ ],, 10 ttt∈  in which the system has 

)(tx  state on considered trajectory; one may define 
functional [2] 
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1
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which attaches trajectory parts corresponding to the 
interval ),[ 1tt  a number ( ))(txI  well calculated; 

( ))()( txutu = , 
                      ( )( ) ( ) ( )( ).,,, ttutxJttxI −=                  (11) 
Then, 
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and, taking into account equation (1) and the fact that 
the derivation is made on optimal trajectory, it results 
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or Hamilton – Jacobi equation 
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where H  is the Hamilton 
function
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Equation (14) is available for any trajectory which 
starts from 0x  and arrives in 1x , determined by an 
admitted command Uu∈ , inclusively along optimal 
trajectories; that means 
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If function ( )ttxI ),(**  admits second order partial 
derivatives, by equation (16) derivation, one obtains 
equation 
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For optimal command *u  determination one uses 
equation 
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or, from equation (17), it results equation 
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By discretizating this equation, it results 
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For calculus of the optimal command )(*
ktu , one 

solves equation (20) using, for example, a Netwon – 
Raphson method, after calculus of ( )1+ψ k . Though, 
considering that linear model (4), one obtains 
equation 
                       ,* pDuBxGx W Δ+Δ+Δ=Δ               (21) 
where 
                      [ ].T1 NPBBRAG +−= −                   (22) 
Component *

puΔ  of the optimal command (6) may 

be determined so that initial state 0x  passes to final 
state 01 =x  so that quadratic criterion 
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takes minimum possible value; matrix )( nnQy ×  has 

elements )sgn( ji
ij
y pxq Δ=  for ,0,0 ≠Δ≠ ji px  with 

,,1, nji =  )sgn( j
ij
y pq Δ=  for 0=ix  and 

)sgn( i
ij
y xq =  for ;0=Δ jp  )( mmRy ×  may be 

chosen as unity matrix )( mm×  [4]. 
With equation (17), one obtains 
                    ( ) ( ) ( ).T tpQtGt yΔ+ψ−=ψ                   (24) 
From stationary condition of function H , from 
equation (18) it results equation  
                           ( ) ( ).T1* tBRtu yp ψ=Δ −                         (25) 
Calculus equation for adjunct vector ψ  is (24), 
which assumes exterior perturbation’s knowing. But, 
in general, this isn’t possible; in equation (24) one 
may replace term pQyΔ  by other term which 

expresses perturbation’s effect. Perturbation affects 
output vector y  of the nonlinear system and vector 

my  of the linear model. As a consequence, the 
perturbation affects system error ryre ,−=  being 
reference vector (imposed). So, equation (24) may be 
expressed as it follows 
                     ( ) ( ),)( T yrktGt −+ψ−=ψ                  (26) 
where k  is a gain coefficient with a variable value; 
one may choose .1=k  If 1≠k , the effect is 
equivalent with supplementary perturbation’s 
appearance, which is compensated by a feedback 
loop after output vector y . Hence, ψ  may be 
calculated by integrating of equation (26), with 

.1=k  
cNN  neural network models an equation with form 

(9) and is trained by error’s minimization  
                             ,2

ccc uu −=ε                           (27) 

where cu  may be calculated with equation 

                                   ,1 r
k

u
m

c =                                (28) 

mk  being direct way subsystem’s gain coefficient of 
the control loop with feedback after output vector .y  
When ( ),.ct,,0 =→→→→ scc xxuurye ,0→ψ  

),(.ct**
ss xhuu ==→ .ct* =→ suu and ,0→ε  

ct.)()( =→ kuku s and, consequently, 0~ →x  and 
.ct. smsm xxx →=→  

 
 
4 Conclusions 
One chooses a linear model very closed to the 
nonlinear one of the leading system, whose state 

xxm →  in regime without disturbances. 
In the initialization stage one leads model in mx  state 
( )0=Δ mx  by use of optimal control law 

.*
mI xKU Δ−=Δ   

In the training stage of the neural network xNN  
                            ,* uUuu Ick +Δ+=                       (29) 
where cu  is the output of neural network cNN  
(neural regulator), whose input is the difference 
between leading system’s output and the reference 

signal .r  The imposed value is 
rk

u
m

c
1

= , because at 

equilibrium ⇔→= cmcm ukuky   ;11 r
k

y
k

u
mm

c →=  

adaptive component u  of the command law is thhe 
input of neural network xNN , whose input is the 
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difference mxxx −=~  because of disturbance P  and 
deviation of model A from the reference one. 
Imposed value *u  of xNN ’s output is calculated 
function of adjunct vector ψ , which is the solution of 
equation (26). 
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