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Abstract: The paper shows the results of computer simulations which were performed with the use of 
OCaml functional language. The simulations show Feigenbaum trees for a broad spectrum of 
functions. The possibility to magnify selected areas of the generated fractals permits viewing a whole 
diversity of structures which are invisible on a normal scale. What is most important, however, is that 
for non-Feigenbaum functions, the Author discovered the structures which differ completely in terms 
of quality from those of classic Feigenbaum trees. 
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1 Introduction 
 
The present paper aims at presenting the results which 
were obtained while studying Feigenbaum trees for 
numerous functions with the use of functional 
programming methods. The Author chose functional 
programming due to the opportunity it provided to 
naturally construct complex mathematical objects - 
higher order procedures, etc. The results are the images 
of the fractals which were generated. It turns out that if 
the class of the functions under study is enlarged by non-
Feigenbaum functions, a standard Feigenbaum tree 
becomes extremely diverse. Additional interesting 
structures are generated. In addition, thanks to the 
computer techniques which were used, the Author 
discovered fractal structures which were beyond the 
critical point and which did not qualitatively resemble 
any fractal images occurring in Feigenbaum trees the 
Author had seen so far. 
 
 
 

2 Problem Formulation 
 
The Author thoroughly studies fractals for non-
Feigenbaum functions and compares them with the ones 
generated for classic Feigenbaum functions. He is 

interested in: the behavior of the orbits in those two 
cases, the frequency of occurrence of subsequent 
bifurcation points and the possibility to determine it by 
providing a constant which is analogous to the 
Feigenbaum constant, and the determination of its 
numerical value. The behavior of Feigenbaum trees for 
the non-Feigenbaum functions beyond the critical point 
is analyzed in particular. Before the solution of the 
problem is presented, essential definitions are given. 
 
 
2.1 Definitions 
 
Definitions which are used in the paper are introduced 
below: 
 
Attraction point of the function f:[a,b]->[c,d]  – point 
which is the limit of the sequence defined recursively: 
a(0)=x0; a(n+1)=f(a(n)) for n>=0; a<x0<b) 
 
Sequence {t(n)} converges to the set of points W only 
if with n -> ∞: 0w-t(n)Inf →

∈Ww
 

 
S-orbit of the function f:[a,b]->[c,d] – set of points to 
which the above sequence defined recursively converges 
 
Function f with parameter a – function g defined as 
follows: g(x)=a*f(x), where a is an additional parameter 
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from a determined range, and f(x) is a determined 
function 
 
Bifurcation point of the function f with parameter a – 
value of parameter a for which the number of the orbit of 
the function g(x)=a*f(x) increases 
 
Feigenbaum tree – diagram showing dependence of the 
orbits of the function f with parameter on this 
parameter’s value, and more precisely: value of the 
parameter a is marked on the x-axis, and the points from 
the orbit for the function f with parameter a – on the y-
axis; the Feigenbaum tree is an example of a fractal 
 
Critical point – value of the coefficient a for which the 
dynamics of the iteration process defined above is 
changed in terms of quality; there occurs a finite increase 
of the orbit cardinality in the bifurcation points below 
this point; chaotic behavior and orbits of infinite 
cardinality appear above this point, which is represented 
by an infinite number of branches in the Feigenbaum 
tree diagram 
 
Cardinality function for a given function f with 
parameter – function which assigns the cardinality of 
the orbit of the function g(x)=a*f(x) to a given parameter 
a; according to the definition of critical point, this 
function is determined only on the segment [0,cp] where 
cp constitutes the critical point’s value 
 
 
Schwarz derivative of the three times differentiable 
function f – function Sf(x) defined with the formula: 
Sf(x)=f3(x)/f1(x)-3/2*(f2(x)/f1(x))^2, where f1, f2, f3 
are respectively: the first, the second and the third 
derivative of the function f 
 
 
Feigenbaum constant – number which is the limit of 
the sequence p(n)=(b(n+1)-b(n))/(b(n+2)-b(n+1)), where 
b(n) is the value of the parameter a for which an n-fold 
bifurcation occurs for the function f with parameter a 
 
 
Feigenbaum functions – functions f for which the p(n) 
sequence defined above has a limit (the Feigenbaum 
constant). In addition, these functions are determined on 
a certain segment [0,b], they have one local extreme 
(maximum) on this segment, they are non-negative, they 
are zero at the points: 0 and b, and they have negative 
Schwarz derivative on the segment [0,b] 
 
Non-Feigenbaum functions - smooth functions which 
are determined on a certain segment [0,b] and which do 
not meet one of the two criteria of the above definition – 

the condition of extremes or the sign of the Schwarz 
derivative 
 
 

3 Problem Solution 
 
3.1 Analysis before the critical point 
In the beginning, images of generalized 
Feigenbaum trees (i.e. also of those which occur 
for non-Feigenbaum functions) are presented 
before the critical point. It is possible to observe 
here additional knots  in the case of non-
Feigenbaum functions which are invisible on a 
normal scale: 
 

 
3.1.1 Function x*(1-x)^3 
 
 
The part of the fractal marked red is magnified in the 
next figure. 

 

  Fig.1 
 
 the figure below shows the magnified 
part, additional knots are clearly 
visible on the right of the image 
 
 

  
Fig.2 
 

3.1.2 Function x*(1-x)^3*(1+x) – another example of 
a non-Feigenbaum function for which the structures 
(humps of knots) which do not occur in Feigenbaum 
functions are generated before the critical point; it is 
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worth to point out that they are a lot more complex 
than in the case of the function which was studied 
above: 
 
 

 
Fig.3 
 

 
           Fig.4 
  
The part marked red on the right of the above image 
is magnified below; such structures did not occur 
before the critical point for Feigenbaum functions: 
 
 

 
             Fig.5 

Fig.6 
 

 
3.2  Analysis beyond the critical point 

 
The quality analysis of Feigenbaum trees for non-
Feigenbaum functions beyond the critical point is the 
most important part of the present paper. The images are 
more complex even for classic Feigenbaum trees in this 
area, because they show orbits of infinite cardinality. As 
it turns out, in the case of non-Feigenbaum functions, 
there are structures generated locally which do not 
resemble those which occur before the critical point 

  
3.2.1 (Classic) Function x*(1-x) – in order to compare 
qualitative features of Feigenbaum trees beyond the 
critical point for non-Feigenbaum and Feigenbaum 
functions, the results obtained for one of the simplest 
Feigenbaum functions are shown first 
 
 

 
              Fig. 7 

 
Below is shown a “window” - a structure which 
resembles a Feigenbaum tree before the critical 
point: 
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          Fig. 8 

 
Below is shown another area beyond the critical 
point. The orbits in this area behave completely 
chaotically: 
 
 

 
Fig. 9 
 
  
 
3.2.2 Function x*(1-x)^3*(1+x) – first non-
Feigenbaum function for which a Feigenbaum tree 
beyond the critical point is shown 
 
 
On the next pictures, the part occurring near the 
critical point is visible: 
 
 

Fig. 10 
 

The previous figure shows a “solar plexus” – dark 
area to which the lines of the orbits converge. Such 
plexus also occurs in the case of Feigenbaum 
functions, but it is less distinct. The plexus is 
magnified in the figure below: 
 
 

Fig. 11 
 
3.2.3 Function x*(1-x)^4 (after the critical point is 
crossed), it is worth to point out the new structures. 
 
 
(a) image of a tree beyond the critical point before 

magnification, characteristic “cups” are clearly 
visible on the right of the figure: 
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Fig. 12 
 
(b)  “cups” after magnification (it is possible 
to observe that several types of orbits overlap 
each other – some irregular ones and the ones 
seen before in the function x*(1-x)^3*(1+x) 
before the critical point): 
 

 

 
Fig. 13 

 
(c) rectangular “block” from the previous image, 
magnified: 
 
 
Fig.14 

 

3.2.4  
 Function x*(1-x)*tan(x/2) – other 
fractal patterns are visible here which 
are different in terms of quality from 
the ones described previously; they 
can be clearly seen only after they are 
precisely magnified; it was possible to 
observe them after the techniques 
used by the Author of the paper to 
produce images of fractals were 
improved, before these structures 
were hidden: 

 
 

(a) no new structures are visible on a regular scale: 
 

 
Fig. 15 
 
(b) Images which were produced after subsequent 

magnifications: 
 

 
Fig. 16 
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Fig. 17 – image obtained after the area marked red in 
the previous figure was magnified 
 
 
 
When one of the darker areas from the previous 
figure is magnified again, a characteristic structure 
of a “tarantula” appears. Darker areas on one axis 
turn out to be the copies of the image presented 
below, which is shown in the next figures: 
 
 

 
 

 
Fig. 18 
 

 
 
Fig. 19 –  the area marked red is shown magnified in 
the next figure 
 

 
Fig. 20 – the axis seen in the previous figures is 
almost invisible due to the limited accuracy of the 
software (this image was produced after a small area 
of a Feigenbaum tree beyond the critical point was 
magnified several times) 

 
 
 
 
 

Below is presented another structure which was 
found while studying the function. This structure is 
something in between the structure of “tarantula” 
and the image of orbits which behave in a regular 
way: 
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Fig. 21 
 
When another area of the tree in Figure 17 is 
magnified, the following complex structure is 
generated: 
 
 
 

 
Fig.22 
 
Below are analyzed “rectangular blocks” which are 
produced by magnifying selected fragments of the 
tree under study: 
 
 

  
 
Fig. 23 – characteristic black blocks containing 
extremely complicated structures which will be seen 
when the marked area is magnified 
 

The rectangular blocks are in fact very rich fractal 
structures; in order to ascertain it, the figure below 
shows the marked area of the above block after it is 
magnified; a kind of a “tarantula structure” is vis ible 
in the center of the figure; in addition, horizontal 
stripes occur: 
 
 

  
Fig. 24 

 
Below, a magnification of this interesting middle 
stripe from the above figure is shown; the small 
“bumps” are probably a copy of the whole figure; 
due to the limited accuracy of the methods used by 
the Author, he was not able to magnify these fine 
“granularities” 
 

 
 
Fig. 25 
 
Below is shown the area bordering the area presented 
in the figure above; the marked area is magnified in 
the next figure: 
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Fig. 26 

 

 
 
 
Fig. 27 – rectangular block marked in Figure 26; the 
lines which resemble fragments of sinusoids overlap 
the areas which behave chaotically; the dark bumps 
which lie on one axis are probably “tarantula” 
structures  
 
 
4   Conclusion 
 
The results of the simulations clearly indicate that while 
Feigenbaum trees for non-Feigenbaum functions seem to 
be isomorphic with classic Feigenbaum trees on a small 
scale, these functions’ different character is proved first 
of all by the local structures which the Author did not 
observe in classic trees. What is interesting, the 
structures which indicated non-Feigenbaum functions 
occurred even before the critical point. These were the 
additional knots. They occurred individually or in larger 
conglomerations. Therefore, the cardinality function 
defined at the beginning of the paper is not in general 
monotonic, and this non-monotonicity manifests itself 
before the critical point, indicating the type of the 
function under study so to speak. The Author studied 

Feigenbaum trees for non-Feigenbaum functions, paying 
special attention to quantitative results at the same time. 
For the majority of the non-Feigenbaum functions under 
study, a constant determining the bifurcation frequency 
which was extremely similar to the Feigenbaum constant 
was generated (despite qualitative differences in the 
trees). It would suggest that the conditions imposed on 
the functions, i.e. that their iteration tree (Feigenbaum 
tree) should be distinguished by this constant are too 
restrictive and they can certainly be lessened. 
It is worth to underline that it was the use of functional 
programming that permitted a thorough examination of 
the generated fractals while retaining a high level of 
abstraction, and identification of characteristic local 
areas. 
The character of the newly-discovered structures in 
Feigenbaum trees for non-Feigenbaum functions seems 
to be a purely mathematical challenge and will probably 
constitute the subject of the Author’s next paper. 
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