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Abstract: The paper shows the results of computer simulatdmich were performed with the use of
OCaml functional language. The simulations shovgé&m®baum trees for a broad spectrum of
functions. The possibility to magnify selected arefthe generated fractals permits viewing a whole
diversity of structures which are invisible on amal scale. What is most important, however, i$ tha
for non-Feigenbaum functions, the Author discovehedstructures which differ completely in terms
of quality from those of classic Feigenbaum trees.
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1 Introduction interested in: the behavior of the orbits in thas®
cases, the frequency of occurrence of subsequent
bifurcation points and the possibility to determithdy
providing a constant which is analogous to the
Feigenbaum constant, and the determination of its
numerical value. The behavior of Feigenbaum trees f
the non-Feigenbaum functions beyond the criticahtpo

is analyzed in particular. Before the solution bkt
“problem is presented, essential definitions arergiv

The present paper aims at presenting the resulishwh
were obtained while studying Feigenbaum trees for
numerous functions with the use of functional
programming methods. The Author chose functional
programming due to the opportunity it provided to
naturally construct complex mathematical objects
higher order procedures, etc. The results arentagés
of the fractals which were generated. It turns tbat if
the class of the functions under study is enlatgedon-
Feigenbaum functions, a standard Feigenbaum tre
becomes extremely diverse. Additional interesting
structures are generatedn addition, thanks to the
computer techniques which were used, the AuthorP€lOW:

discovered fractal structures which were beyond the ) ] ) )
critical point and which did not qualitatively resble  Attraction point of the function f:[a,b]->[c,d] — point
any fractal images occurring in Feigenbaum trees th Which is the limit of the sequence defined recugtiv
Author had seen so far. a(0)=x0; a(n+1)=f(a(n)) for n>=0; a<x0<b)

g.l Definitions

Definitions which are used in the paper are intoesdu

Sequence {t(n)} converges to the set of points W lgn
if with n -> oo Inf|t(n)-w| -0

2 Problem Formulation
S-orbit of the function f:[a,b]->[c,d] — set of points to

The Author thoroughly studies fractals for non- which the above sequence defined recursively cgeger

Feigenbaum functions and compares them with the one . . . )
'g |m tunctl P M S Function f with parameter a — function g defined as

generated for classic Feigenbaum functions. He isfollows: g(x)=a*(x), where a is an additional pareter
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from a determined range, and f(X) is a determinedthe condition of extremes or the sign of the Sclawar
function derivative

Bifurcation point of the function f with parameter a—
value of parameter a for which the number of thstaf 3 Problem Solution
the function g(x)=a*f(x) increases
] ] ] 3.1 Analysis before the critical point
Feigenbaum tree— diagram showing dependence of the | the beginning, images of generalized
orbits of the function f with parameter on this pgjgenbaum trees (i.e. also of those which occur

parameter's value, and more precisely: value of thegr nonFeigenbaum functions) are presented
parameter a is marked on the x-axis, and the pdmts  pefore the critical point. It is possible to observ

the orbit for the function f with parameter a -t y-  nere additional knots in the case of non-
axis; the Feigenbaum tree is an example of a fracta Feigenbaum functions which are invisible on a
normal scale:

Critical point — value of the coefficiena for which the

dynamics of the iteration process defined above is

changed in terms of quality; there occurs a fimit#ease 3 1 1 Function X*(1-X)"3

of the orbit cardinality in the bifurcation poinkelow

this point; chaotic behavior and orbits of infinite

cardinality appear above this point, which is repréed  The part of the fractal marked red is magnified inthe
by an infinite number of branches in the Feigenbaumpey; figure.

tree diagram

Cardinality function for a given function f with
parameter — function which assigns the cardinality of
the orbit of the function g(x)=a*f(x) to a givennaaneter
a; according to the definition of critical pointhig

function is determined only on the segment [0,chgre
cp constitutes the critical point’s value

Schwarz derivative of the three times differentiabd /é Fig.1
function f — function Sf(x) defined with the formula: ’

SH(x)=3()/f1(x)-3/2*(f2(x)/f1(x))"2, where f1, 213 the figure below shows the magnified
are respectively: the first, the second and thedthi part, additional knots are clearly

derivative of the function f visible on the right of the image

Feigenbaum constant -number which is the limit of
the sequence p(n)=(b(n+1)-b(n))/(b(n+2)-b(n+1))even
b(n) is the value of the parameter a for which dold
bifurcation occurs for the function f with parantese

Feigenbaum functions —functions f for which the p(n)
sequence defined above has a limit (the Feigenbaum
constant). In addition, these functions are deteechion

a certain segment [0,b], they have one local exrem
(maximum) on this segment, they are non-negathay t
are zero at the points: 0 and b, and they havetinega
Schwarz derivative on the segment [0,b]

Fig.2

3.1.2 Function x*(1-x)"3*(1+x) — another example of

Non-Feigenbaum functions- smooth functions which & non-Feigenbaum function for which the structures

are determined on a certain segment [0,b] and wiich  (NUmPs of knots) which do not occur in Feigenbaum
not meet one of the two criteria of the above dein — functions are generated before the critical pointjt is
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worth to point out that they are a lot more complex
than in the case of the function which was studied
above:
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Fig.4

The part marked red on the right of the above image
is magnified below; such structures did not occur
before the critical point for Feigenbaum functions
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3.2 Analysis beyond the critical point

The quality analysis of Feigenbaum trees for non-
Feigenbaum functions beyond the critical pointlie t
most important part of the present paper. The isage
more complex even for classic Feigenbaum treehkif t
area, because they show orbits of infinite cardatinahs

it turns out, in the case of non-Feigenbaum fumstio
there are structures generated locally which do not
resemble those which occur before the critical poin

3.2.1 (Classic) Function x*(1-x) — in order to comare
qualitative features of Feigenbaum trees beyond the
critical point for non-Feigenbaum and Feigenbaum
functions, the results obtained for one of the sinipst
Feigenbaum functions are shown first

Fig. 7

Below is shown a “window” - a structure which
resembles a Feigenbaum tree before the critical
point:
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_ » Fig. 10
Below is shown another area beyond the critical

point. The orbits in this area behave completely
chaotically:

The previous figure shows a “solar plexus” — dark
area to which the lines of the orbits converge. Shc
plexus also occurs in the case of Feigenbaum
functions, but it is less distinct. The plexus is
magnified in the figure below:

3.2.2 Function x*(1-x)"3*(1+x) - first non- Fig. 11
Feigenbaum function for which a Feigenbaum tree
beyond the critical point is shown 3.2.3 Function x*(1-x)4 (after the critical point is

crossed), it is worth to point out the new structues.

On the next pictures, the part occurring near the

critical point is visible: (a) image of a tree beyond the critical point before
magnification, characteristic “cups” are clearly
visible on the right of the figure:
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3.24

Function x*(1-x)*tan(x/2) — other
fractal patterns are visible here which
are different in terms of quality from
the ones described previously; they
can be clearly seen only after they are
precisely magnified; it was possible to
observe them after the techniques
used by the Author of the paper to
produce images of fractals were
improved, before these structures
were hidden:

(a) no new structures are visible on a regular scale:
Fig. 12

(b) “cups” after magnification (it is possible
to observe that several types of orbits overlap E—
each other — some irregular ones and the ones ﬁ
seen before in the function Xx*(1-x)"3*(1+x)

before the critical point):

—t
Fig. 15

(b) Images which were produced after subsequent
magnifications:

Fig. 13

(c) rectangular “block” from the previous image,
magnified:

Fig.14

Fig. 16
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Fig. 17 — image obtained after the area marked resh ~ Fig. 19 — the area marked red is shown magnifieahi
the previous figure was magnified the next figure

s}

When one of the darker areas from the previous
figure is magnified again, a characteristic structue
of a “tarantula” appears. Darker areas on one axis
turn out to be the copies of the image presented
below, which is shown in the next figures:
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Fig. 20 — the axis seen in the previous figures is
almost invisible due to the limited accuracy of the
software (this image was produced after a small aese
of a Feigenbaum tree beyond the critical point was
magnified several times)

Below is presented another structure which was
found while studying the function. This structure s
something in between the structure of “tarantula”
and the image of orbits which behave in a regular
way:
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The rectangular blocks are in fact very rich fractd
structures; in order to ascertain it, the figure bdow
shows the marked area of the above block after isi
magnified; a kind of a “tarantula structure” is visible
in the center of the figure; in addition, horizontd
stripes occur:

Fig. 21

When another area of the tree in Figure 17 is
magnified, the following complex structure is
generated:

Fig. 24

Below, a magnification of this interesting middle
stripe from the above figure is shown; the small
“bumps” are probably a copy of the whole figure;
due to the limited accuracy of the methods used by
the Author, he was not able to magnify these fine
“granularities”

Below are analyzed “rectangular blocks” which are
produced by magnifying selected fragments of the
tree under study:

Fig. 25

Below is shown the area bordering the area preserde
in the figure above; the marked area is magnifiedn

Fig. 23 — characteristic black blocks containing the next figure:

extremely complicated structures which will be seen
when the marked area is magnified
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Feigenbaum trees for non-Feigenbaum functions ngayi
special attention to quantitative results at theeséime.
For the majority of the non-Feigenbaum functiondeam
study, a constant determining the bifurcation fesgry
which was extremely similar to the Feigenbaum camtst
was generated (despite qualitative differences hi@ t
trees). It would suggest that the conditions imgose
the functions, i.e. that their iteration tree (Fgigaum
tree) should be distinguished by this constant tace
restrictive and they can certainly be lessened.

It is worth to underline that it was the use ofdtional
programming that permitted a thorough examinatibn o
the generated fractals while retaining a high leoEl
abstraction, and identification of characteristmcdl

_ areas.

Fig. 26 The character of the newly-discovered structures in
Feigenbaum trees for non-Feigenbaum functions seems
to be a purely mathematical challenge and will plibyp
constitute the subject of the Author’s next paper.
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