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ABSTRACT 
Abstract: In this paper, a new three-dimensional optimized reconstruction of a spark discharge is proposed. A Discharge 
process is analyzed in gas atmosphere for two different electrodes. New tools employed to characterize the electrical 
insulation increase the knowledge about the physical phenomena involved in the development of electrical discharge 
processes. This work reports the progress of a 3D reconstruction of a spark discharge. The reconstruction is based on a 
mesh method called Simplex. After simplex mesh reconstruction, a mesh optimization is applied to reduce the number of 
polygons of the polyhedron, taking into account the gradient across the channel. The 3D optimized reconstruction takes 
into account the orthogonal projections of images taken by two digital cameras. Such reconstruction is done with a point-
plane electrode system, with distance between 3mm and 30 mm.  Negative pulse voltage from 40 kV up to 70 kV was 
applied to the point electrode. Atmospheric air was used as electrical insulator. 
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1      Introduction  
One common process for creating a model is the 
characterization of a phenomenon.  In this work, we are 
making the 3D reconstruction of spark discharges.  This 
reconstruction process is based on the information 
obtained through digital images of the spark discharges.  
Previous works about characterization of spark 
discharges, based on digital images, has been reported 
following a two dimensional analysis [1][2]. Of 
particular interest is the characterization of the path of 
an electrical discharge, since the cause of the spark 
behavior could be related to the electrical field strength 
and to the ionized process in the head of the 
discharge[3][4].   
 
We have developed a reconstruction based on a three 
dimensional model which has not been done before; or 
at least, it has never been reported. The reconstruction is 
based on a mesh method called Simplex[5]. After 
simplex mesh reconstruction, a mesh optimization is 
applied to reduce the number of polygons of the 
polyhedron, taking into account the gradient across the 
channel. 3D optimized reconstruction takes into account 
two orthogonal projections of images. The images were 
taken by two digital cameras. The 3D reconstruction 
phenomena is done with point-plane electrodes array at 
a distance between 0.3 and 3 cm. Negative pulse voltage 
from 40 kV up to 70 kV was applied to the point 
electrode. Atmospheric air was used as electrical 
insulator 
   

The structure of the paper is organized as follows. 
Section II gives details of 3D reconstruction process, 
whereas the polyhedron reconstruction, based on 
simplex mesh methodology, are given in section III. In 
order to reduce the number of polygons of the 
polyhedron, an optimized simplex mesh are detailed in 
section IV. Whole spark discharge reconstruction is 

presented in section V and section VI shows results of 
our proposed approach. Finally, future works and 
conclusions are presented in section VII. 
 

2      3D Reconstruction Process 
The 3D reconstruction process generates a model based 
on Simplex meshes [5].  For this, the digital images of 
the spark discharges are pre-processed in order to isolate 
the information of the phenomenon, in order to obtain a 
3D model which only represents the spark discharges. 
 
The pre-processing consists of three stages: 

1. Filtering.- Using a color-based filter most of 
the non-phenomenon data in the images is 
eliminated. 

2. Fitting.- Using a region-spreading algorithm, 
the zone of the images in which the spark 
discharges appear, is located. 

3. Improvement.- With the projection data after 
the fitting stage, a set of 3D “improved” 
vertices is created (see ahead), over which the 
simplex mesh will be created. 

 
The overall process for the 3D reconstruction is shown 
in Figure 1. 
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Figure 1: The overall process of the 3D 

reconstruction of a spark discharge 

The images were taken using two video-cameras on 
independent recording, from which “synchronized” 
frames were taken. 
 
The synchronization was implemented in two levels: a 
macro-synchronization based on the video tape timing 
and a micro-synchronization using an intermittent laser 
signal, which is visible in the frames. 
 
The video-cameras were positioned in order to obtain 
orthogonal plane projections.  This was implemented by 
mounting a chassis over the cameras.  The chassis 
includes a laser diode with a beam parallel to the normal 
vector of the viewing plane of the camera.  And using a 
chassis with a mirror mounted 45 degrees over horizon. 
The cameras were positioned orthogonally to each 
other,  as shown in Figure 2. 
 

 
Figure 2: Scheme for image acquisition. 

 
With the acquisition scheme implemented, we 
developed the pre-processing stages and the 3D 
reconstruction, described next. 
 
The applied filter is: 

)(IfcI f = , where  is the image after filtering, and 
I, the original image. The color filter is defined as: 
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Where  are the values for the Red, 
Green and Blue components of the 
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For the fitting stage we first look for a pixel that 
satisfies the next criteria: 
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Where rΔ  restricts the range of the filter.  A pixel that 
satisfies these criteria is named the “root” pixel and is 
used to define the image after fitting, as follows: 
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Where  is an element of the path that is being 
constructed.  It is said that a pixel ‘q’ is an 8_neighbor 
of an ‘r’ pixel if ‘q’ is adjacent horizontal, vertical or 
diagonally to ‘r’. 

t

 
Experimentally it was determined that: 
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had a good response, but these parameters are variable. 
 
The improvement stage generates a set of 3D vertices,  

and is described next: 3ℜ∈rV
Define ix,Δ  as the number of horizontal pixels with 
information of the phenomenon in the image of the 
frontal view, for i pixel column.  and number of 
vertical pixels with information of the phenomena in the 
image of the top view, for the j column of pixels.  As 
shown in Figure 3. 

jy,Δ
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Figure 3: Parameters of the projections 
 

ix,Δ  and are used to define the minor and 
mayor radius of the ellipse in whose perimeter are 
distributed the vertices  that define the shape of the 3D 
model. 

jy,Δ

 
Now, let be the X,Y and Z 

components of a 3D point .  Then, based on 
these definitions, we say that the vertices set , 
that are obtained after the improving stage is given by: 

,   where:   (5) 
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hsV ={ X( v ) is the X coordinate of a 
non-zero pixel in the top image in column i and Y( ) is 
the  max(all non-zero pixels in the frontal image, in i 
column), I=[0,1,2 … (length of frontal image)-1] 

|3ℜ∈v
v

 

hiV ={ X( v ) is the X coordinate of a 
non-zero pixel in the top image in column i and Y( ) is 
the  min(all non-zero pixels in the frontal image, in i 
column), I=[0,1,2 … (length of frontal image)-1] 

|3ℜ∈v
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liV ={ Y( ) is the Y coordinate of a 
non-zero pixel in the frontal image, in column j and 
X( ) is the max(all non-zero pixels in the top image, in 
j column), j=[0,1,2, … (length of top image)-1]} 

|3ℜ∈v v

v

 

ldV ={ Y( v ) is the Y coordinate of a 
non-zero pixel in the frontal image, in column j and 
X( ) is the min(all non-zero pixels in the top image, in 
j column), j=[0,1,2, … (length of top image)-1]} 

|3ℜ∈v

v

 
With this we have all the pixels that define the shape of 
the projected volume.  But this volume has a rectangular 
shape, so we also adjust it to an ellipsoidal one, as 
shown in Figure 4.   
 
If })(|{ ivZVvV rsi =∈= , , we 

adjust each element of each with: 

ni ,...,3,2,1=

siV
 
Let  kv siV∈  with k=[0,1,2,..., riV -1], then  

X( )=0.5*max(X( )-X( ))*sine(k*360),         (6) kv mv nv
Y( )=0.5*max(Y( )-( ))*cosine(k*360),   (7) kv mv nv
  nm vv , siV∈  

 
Figure 4: Shape vertices representation.
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Leaving  as the set of 
vertices that define the shape of the 3D model, but this 
is not finished yet, because we still have to define the 
edges that connect the vertices, so that the model is a 
simplex mesh. 

snsssri VVVVV L∪∪∪= 321

 
The 3D reconstruction defines edges that connect 
vertices, following the next rules: 
 
 

3      Polyhedron Reconstruction  
Starting from the top and lateral orthogonal views, the 
3D cylindrical polyhedron reconstruction is done; so we 
have a continuous 2D function (explained in the 
previous chapter). Now the mesh reconstruction is done. 
The cylinder can be sampled by n-images 
(longitudinally) and by m samples per image (see 
Figures 5 and 6).  Then the Mesh reconstruction is 
applied. We have used simplex mesh methodology at 2-
simplex mesh configuration; it means that each 
polyhedron vertex could be connected with other three 
vertices, as it can be seen in figure 6.   

 
Figure 5: Sampling over cylinder:  n-images 
(longitudinally) and m samples per image. 

 
 
Ideally, the number of polygonsη  is determined as a 
function of two parameters, the first one is the number 
of images taken n  (transversal cuts number), and the 
second one is the number of samples m taken per 
image. The number of polygonsη  can be estimated by 
the followings equations: 
 
Case 1) when the number of images is an even number, 
and the number of samples is even number, for m≥4, 
and  n≥4: 

4
nm ⋅

=η      (8) 

 
Case 2) when the number of images is an odd number 
and the number of samples is an even number, for m≥4, 
and n≥3: 

( )
4

1−⋅
=

nmη      (9) 

Case 3) when the number of images is an odd number 
and the number of samples is an odd number, for m≥3, 
and n≥5, we have two cases 
 

i) When the image number (n-1) is 
divisible by four:  

4
)1( −⋅

=
nmη            (10) 

When the image number (n+1) is 
divisible by four: 

4
2)1( −−⋅

=
nmη           (11) 

Case 4) when the number of images is an even number 
and the number of samples is an odd number, for m≥3, 
and n≥4, there are two cases: 
  

Samples 

Transversal cuts (images) 

ii) When the image number n is divisible 
by four::  

4
nm ⋅

=η            (12) 

iii) When the image number (n-2) is 
divisible by four: 

4
2−⋅

=
nmη                     (13) 

   
As an example, if we take 224 images and 30 samples 
per image, then the number of polygons created are 
1680 (This corresponds to Case 1) 
 
η  = (n*m/4) = (224*30)/4 = 1680         (14) 
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implemented with a software tool, which allows to 
manually define the parameters for the thresholds in the 
filter and also to define the “root” pixels for the fitting, 
among other features.  With this software the laboratory 
experiments were done. 
 

Figure 6: Sampling points over 2D projection: n-
images in horizontal axis vs. m-samples per image in 

vertical axis. 
 
 

4      Optimized Simplex Mesh  
Once the general reconstruction mesh by the simplex 
method has been obtained, an optimization over it is 
applied. Optimization is concerned with the localization 
of the best polygonal distribution units; it is applied 
across the channel (cylinder) spark reconstruction. 
Optimization technique is based in local gradient 
estimation.  The next equation represents the gradient 
for the 2D function (image case), where the norm is 
taken. 
 
 
 
                  (15) 
 
 
If the gradient is less or equal than a specified threshold, 
the polygon is eliminated since it is redundant.  
 
    

5      Spark Discharge Reconstruction  
A brief description the electrical experimental set-up it 
follows: a point-plane electrodes array was employed 
for the tests. The active electrode is made by a brass rod 
with a length of 10 cm, finished by a stainless-steel tip 
point radii of less of 1mm. The earthed electrode is a 
stainless-steel disk with a diameter length of 12 cm (4 
in) and 7 mm width. Both electrodes were aligned 
horizontally. In order to obtain the negative high voltage 
pulse, a negative 20 kV DC high-voltage supply 
(Spellman SL600R) is employed to charge a four 
capacitor-bank (each capacitor with 3.2 nF @  30kV 
maximum of charge) in a Marx array, so it  is possible 

were made for spark occurrence at different gap 
separations, ranging from 3 mm to 30 mm, and negative 
pulse voltage from 40 kV

to obtain up to 70 kVp pulse.  A set of measurements 

k discharge characterization was done with 

 are isolated, 

ll the stages shown in Figure 1 have been 

6      Results 
On logy was defined and the physical 

igure 7 shows two images of the phenomenon; Figure 

he 3D mesh reconstruction is then ready to be 

he algorithm was also tested with different gradient 

1 

p up to 70 kVp. 
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The spar
help of this ·3D reconstruction tool. Spark voltages (Vs) 
were taken for each distance at least, three times and the 
reconstruction of the spark image was done for each 
sample. Figure 7 shows two examples of the original 
images used for the 3D reconstruction (for one spark 
condition). Figure 7(a) shows the horizontal view, 
parallel to the phenomenon and Figure 7(b) shows the 
top view, orthogonal to the parallel view. 
From these images, the spark discharges
taking only the blue zone. The images are also 
synchronized by a laser ray. The Methodology 
presented in Figure 1, was applied until the 3D 
reconstruction is accomplished. 
 

m

A

 

ce the methodo
phenomenon implemented, we proceeded to process 
images in order to obtain the cylindrical reconstruction. 
Two electrodes were used, the first one is aluminum 
(plane electrode) and the second one is tungsten (point 
electrode). The main propose of this work is 3D 
optimized reconstruction of point-plane spark discharge 
(computationally). The electrical parameters of the 
physical phenomenon were set up as follows: inter-
electrodes distance: 5mm; applied voltage: 30 kV. 
 22 ),(),(),( F
7(a) shows the horizontal view and Figure 7(b) shows 
the top view. Those images are orthogonal; parallel and 
orthogonal to the spark discharge, respectively. Starting 
from these images, the proposed computational 
methodology was applied: color filtering, images 
synchronization, fitting and improvement, until 3D 
reconstruction. 
 
T
optimized.  Figure 8 shows an example with and 
without optimization. Figure 8(a) presents the 2-simplex 
mesh [3] reconstruction without optimization. This 
reconstruction gives a total of 2,780 polygons (220 
images, 50 samples per image).  Figure 8(b) presents an 
optimized example at 5 degrees of gradient. This 
optimized reconstruction gives a total of 1075 polygons. 
 
T
values, from about one to 8 degrees. Table 1 shows 
results of number of polygons needed for a good 
reconstruction (220 images, 30 samples per image). We 
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can see from table 1, that there is a 27% polygon’s 
reduction while varying the gradient from 1 to 8 
degrees. No significant degradation occurs when 
making the reconstruction of the image in the range 
going from 1  to 5 degrees (see Figures 9(a) and 9(b)). 
 
Other test was also developed on the 3D reconstruction 

7      Conclusions and Future Wworks 
A 

ith the optimized methodology, there is a reduction in 

ifferent expressions were developed to find ideal 

uture work consists in the characterization of spark 
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(a)       (b) 

Figure 7: Original images taken from phenomena: a) Horizontal view and (b) upper view 
 
 

 
  

(a)       (b) 
Figure 8: A 3D reconstruction examples (Vs: -30 kV, d: 5 mm.):  (a) Without polygonal optimization: 7,700 

polygons; (b) With optimization: 1075 polygons at 5 degrees of gradient  
 
 
 

Gradient Threshold Polygons number 
 ±1º - 0.0175 rad. 720 
±2º - 0.0349 rad. 705 
±3º - 0.0524 rad. 690 
±4º - 0.0698 rad. 660 
±5º - 0.0893 rad. 645 
±6º - 0.1047 rad. 615 
±7º - 0.1222 rad. 585 
±8º - 0.1396 rad. 525 

 Table 1: Polygons optimization as a function of 
gradient threshold (at 220 images and 30 samples 
per image). 

 

Gradient Threshold Polygons number 
±1º rad. 1200 
±2º rad. 1175 
±3º rad. 1150 
±4º rad. 1100 
±5º rad. 1075 
±6º rad. 1025 
±7º rad. 975 
±8º rad. 875 

Table 2: Polygons optimization as a function of 
gradient threshold (at 220 images and 50 samples 
per image). 
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 (a)       (b) 

 
(c) 

 
 

Figure 9: 3D Reconstructions as function of gradient and polygons units: (a) Without polygonal optimization: 
7,700 polygons (220 images and 140 samples per image); (b) With optimization: 875 polygons at 8 degrees of 

gradient (220 images and 50 samples per image); (c) With optimization: 1075 polygons and 5 degrees of gradient 
(220 images and 50 samples per image). 
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