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Abstract: - The uncontrolled motion of analogue the Beagle 2 Lander is considered in the rarefied Mars’s 
atmosphere. Such reentry vehicle has small lengthening and the blunted form for effective braking. Such 
Lander can have three balancing positions of a spatial angle of attack: * 0, * 0, *α α α π= ≠ =  depending on 
position of the center mass. It can result in a resonance at change of a dynamic pressure at descent in an 
atmosphere. It is shown, that numerical integration of motion equations do not allow receiving authentic results 
because of probabilistic character of transients connected to a resonance. Conditions of stability of movement 
are received for various areas of movement at a resonance. Calculation of the top and bottom estimations of 
parameters of movement is offered to spend with use of the averaged equations. Researches are shown, that the 
resonance could be cause of accident the Beagle 2 Lander. 
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1   Introduction 
One of the principal causes, resulting in abnormal 
behavior Reentry vehicle in an atmosphere, it is 
considered a parametrical resonance [1, 2] which 
arises at presence of small asymmetry when 
movement concerning the center of mass depends on 
two angular variables: a spatial angle of attack and a 
angle of own rotation.  If frequency of fluctuation of 
the angle of attack and average angular speed of own 
rotation under action of indignations become 
multiple to the relation of simple integers then the 
resonance arises. The resonance as the phenomenon 
of big change of amplitude fluctuations can to arise 
when small asymmetry does not have also movement 
depends on one angular variable: a spatial angle of 
attack, if coefficient of the aerodynamic static 
moment ( )mα α  addresses in a zero in three points 
on a interval [ ]0,π . In this case on a phase portrait 

( )α α α=& &  three areas divided separatrices [3] can to 
take place. The dynamic pressure changes with 
height of flight and the phase portrait any more does 
not answer conservative system.   In connection by it 
the evolution of phase trajectories takes place. As a 
result, these trajectories can to cross separatrices and 
fall into various phase portrait areas, which is 
followed by qualitative changes in the motion 
character. This is a resonance. 
 
 
2   Problem Formulation 
Uncontrolled reentry vehicle has small lengthening 

of the blunted form, which provides effective 
braking for descent in a rarefied atmosphere of Mars. 
This paper considers spatial motion around a re-
entry’s center of mass with the angle of attack 
dependence of the coefficient static moment having 
form of a biharmonical series   

( ) sin sin 2m a bα α α α= + .   
Such the angle of attack dependence of the 
coefficient static moment is typical for uncontrolled 
reentry vehicles of segmentally-conical, blunted 
conical, and other shapers  (Soyuz, Mars, Apollo, 
Viking, Beagle 2 Lander). The presence of second 
harmonic in the moment characteristics causes the 
possibility of appearance of an additional 
equilibrium position of a reentry vehicle in the angle 
of attack, i.e., an additional singular point on a phase 
portrait * (0, )α π∈  of the system, which causes the 
transient mode – resonance. Fig. 1 shows a 
segmentally - conic body (analogue of the Beagle 2 
Lander) and dependences of the coefficient static 
moment on the spatial angle of attack ( )mα α  at 
various positions of the center of the mass 

/T Tx x L= , counted from nose of a body ( L -
reference length), received on the shock theory of 
Newton. 
     For considered reentry vehicles position 0α =  is 
stability. If the condition 

2b a>                         (1) 
take place, then there is an intermediate  position of 
balance * (0, )α π∈ . 
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Fig. 1 

 
     The purpose of the given report - to show an 
opportunity of occurrence of resonance, to find 
conditions of stability of the perturbed motion, to 
construct procedure of calculation of the top and 
bottom estimations of parameters of movement with 
use of the average equations [3]. 
 
 
3   The equations of motion and the 
phase portrait 
The motion of an axial-symmetric body around the 
center of mass at descent in an atmosphere is 
described by the system with slowly varying 
parameters of type [2] 
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where  are the vector of slowly varying 
parameters; 

z
α  is the angle of attack, ε  is the small 

parameter; R, G  are projections of a kinetic moment 
vector on the longitudinal axis body, on of the 
velocity vector ; V is absolute value of the velocity 
vector, θ  is the angle of the trajectory deviation, H 
is height of flight, is the dynamic pressure, S is the 
vehicle reference area, 

q
Mα is the static moment, I is 

the transverse moment of inertia.  
     Evolution of motion occurs under action of 
disturbance at 0ε ≠ . The disturbance system (2) is 
reduced to non-perturbed system with one degree of 
freedom at 0ε =   

    ( ) 0Fα α+ =&& .   (3) 
     It is possible to find connection between three 
balancing positions * 0, * 0, *α α α π= ≠ =  and 
positions of balance of the system  (3) on a phase 

portrait at performance of conditions (1). The energy 
integral of system (3) has the form of   
    ( )2 / 2 Wα α E+ =& ,  (4) 
where 
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is potential energy. 
     We introduce a new variable cosu α= , and then 
the energy integral (4) takes the form 

2 2 2
2

2 2

2
2(1 ) 2(1 )

u G R GRu Au Bu E
u u

+ −
+ + + =

− −
&

 

or 
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     Research of potential energy  is executed in 

[2].  Function 
( )W u

( )W u  has no points of excess  on an 

interval ( )1,1−  at performance of the condition 

( )( ) *

1 1
min 0.5 gu

B W u B
− ≤ ≤
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where  ( ) ( )2 2 2
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2
2(1 )
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g

d W u d G R GRuW u
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     The phase plane divided the separatrice into three 
areas: external 0A and two internal 1A and 2A , if the 
condition satisfies  

( ) ( )*1 *2 0W u W u′ ′⋅ < , 
where ,  are roots of the equation: *1u *2u

( ) ( )2

2 0
d W u

W u
du

′′ = = . 

     If *E W> , where  is value  in saddle 
point 

*W ( )W u

*u u= , then motion occurs in external area 0A , 
as can been from fig. 2. Otherwise ( *E W< ) motion 
can to take place in any of internal areas 1A  or 2A  
depending on entry conditions. Equality *E W=  
satisfies to motion on the separatrice. 
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Fig. 2 
4   Disturbed motion stability 
We investigate the disturbed motion research in 
areas 0A , 1A , 2A . Movement can begin both in 
external area 0A , and in any of internal areas 1A  and 

2A . If the area in which began movement, is 
unstable, the phase trajectory will cross through 
separatrice some limited time by virtue action of 
disturbances. It is obvious, that at the moment of 
crossing separatrice two situations take place: two 
areas are unstable, one is stable and, on the contrary, 
one is unstable, and two are stable. At action of small 
disturbances the average of full energy E  and of 
potential energy  in saddle point  slowly 
changes. For definition of stability it is enough to 
calculate derivatives on time from these functions 
[2]. The internal area (

*W *u u=

1A  or 2A ) will be stable, if in 
neighborhood separatrice the following condition 
satisfies 

*( ) ( , )E z W u z<& & .  (6) 
For external area 0A  the condition of stability looks 
like: 

*( ) ( , )E z W u z>& & .  (7)  
Function (5) in saddle point  is equal *u u=

2
* * * *( , ) 2(1 )[ ( ) ( , )]f f u z u E z W u z≡ = − − .   (8) 

In neighborhood separatrice take place 
*( ) ( , ) ( )E z W u z O ε− = ,  *( ) ( )u z O ε=&  

 Differentiation of function (8) on time gives the 
following result to within of the order  
infinitesimal 2ε  

2
* * *2(1 )[ ( ) ( , )]f u E z W u z= − −&& & .  (9) 

From (9) follows, that conditions (6) and (7) are 
answered with the following conditions, accordingly 
(fig. 3, 4) 

* 0f <& ,  . * 0f >&

 
A0-stable          A1, A2- unstable 

 

Fig. 3  

 
A0- unstable            A1, A2- stable 

 
Fig. 4  

 
From integral of energy (4) follows, that at 0α =&  

( )( ) ,mE z W zα= , 
where mα α=  is amplitude of attack angle. 
For system (2) average equations of motion, are 
received in [3]. We calculate derivatives ( )E z&  and 

 by virtue of the average equations: *( , )W zα&
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For definition of stability of the disturbed motion in 
neighborhood separatrice we introduce new criterion 

*

( , )
m

m m
WF z z
z

α

α

α α ∂
Λ ≡ ⋅ +

∂
& &⋅ ,       (10) 

Then conditions of stability (6) for internal area ( 1A  
or 2A ) and (7) for external area 0A  will become, 
accordingly 

0Λ < ,  .  (11) 0Λ >
     On the basis of the carried out analysis it is 
possible to offer the following procedure of 
calculation of the top and bottom estimations of 
motion parameters with use of the average equations 
[3]. Numerical integration of the average equations is 
carried out from an initial point belonging to one of 
areas till the moment of crossing separatrice. Then it 
is calculated criterion (10) for each of areas 0A , 1A , 

2A , and with the help of conditions (11) stability of 
disturbed motion is defined. The area from which 
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there is an exit on separatrice, always is unstable, 
therefore there can be or one, or two stable areas. In 
the first case, numerical integration proceeds in 
stable area. In the second case, numerical integration 
for each stable area is carried out, in result is 
received the top and bottom estimations of the 
decision. 
     As an example the uncontrolled motion of 
analogue the Beagle 2 Lander is considered in the 
rarefied Mars’s atmosphere. On fig. 5 two branches 
of decisions for angle attack are shown: 0A → 1A  
and 0A → 2A .  

 
Fig. 5 

 
 
5   Conclusion 
     Thus, we have shown, that exist transitive modes 
(resonance) at which parameters of motion 
considerably change at descent in the atmosphere of 
Mars for an axial-symmetric bodies having the 
biharmonic static moment.  Criteria of stability of 
transitive modes are found and procedure is offered 
for the analysis of motion uncontrolled reentry 
vehicles of blunted conical shaper.   It is shown, that 
if not to carry out the similar analysis of stability it is 
possible to overlook one of branches possible 
decisions, hence, to receive not genuine result.  
     Work is executed at support of the Russian 
Foundation for Basic Research (Project № 06-01-
00355-а). 
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