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Abstract: - The proposed method presents a new design for multi-loop PI controllers in MIMO systems in two 
cases: set-point tracking and disturbance rejection. It can identify the tuning parameters of multi-loop PI 
controllers by starting from the generalized IMC-PID approach [1], which is extended from single input, single 
output (SISO) systems to multiple input, multiple output (MIMO) systems. Control parameters obtained from the 
IMC-PID approach have shown good performance for several control systems. However, there is not enough 
robustness in systems which contain a lot of noise and disturbance. A new  design can solve this problem by 
applying the magnitude of sensitivity (Ms) theory. A simulation study is performed for the well-known process 
model and the response performances compared favorably with some famous tuning methods. The results show 
that the proposed method is superior to existing techniques for multi-loop processes. 
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1   Introduction 
The multi-loop PID/PI controller has been studied for 
many decades. In the 1980s, the famous tuning 
method for calculating multi-loop PID controller 
parameters was the Internal Model Control (IMC) [2], 
it was published by C.G. Economou and M. Morari. 
A typical method which related to the multi-loop 
IMC design method was proposed by M.S. Basualdo 
and J. L. Marchetti [3], which considers to the 
interactions between the control loops. The biggest 
log modulus (BLT) tuning design method [4] was 
published by W. L. Luyben and it is still popular in 
process control today. In the 1990s, Loh et. al [5] 
studied the auto-tuning procedure for improving the 
closed-loop frequency responses in MIMO systems, 
and Jung et. al [6] presented the decentralized lambda 
tuning (DLT) design method with the same goal of 
improving stability and robustness.  Recently, the 
generalized IMC-PID approach is designed for the 
multi-loop PID control systems by Lee et. al [1]. This 
approach is a variation of  Lee et. al [7] which 
admitted  to SISO systems. Many multi-loop tuning 
design methods exist for set-point tracking problems 
today. However, there are few methods available for 
disturbance rejection despite the fact that disturbance 
rejection is a more serious problem in industry.  

Therefore, we proposed a new design method which 
proceeds from the generalized IMC-PID approach 
and Ms criterion. The aim of this method is to design 
a multi-loop PI controller that enhances disturbance 
rejection as well as set-point tracking. 

In the multi-loop IMC control systems, the 
performance and robustness of the closed-loop 
system largely depends on the closed-loop time 
constant ( λ ). The optimal value for the closed-loop 
time constant can be obtained by using Ms criteria. 
The proposed method can be compensated the 
influence of disturbance effectively by compensating 
the dominant poles in the diagonal element of the 
process transfer function. 
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Figure 1.  Block diagram for the multi-loop control 
system 
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2   The multi-loop PI controller design  
In the n×n multi-loop feedback control system shown 
in Fig. 1, the closed-loop response to the set-point 
change is  
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where H(s) is the closed-loop transfer function; G(s) 
is the process transfer function which is open-loop 
stable;  is the multi-loop controller with 
diagonal elements only; y(s) and r(s) are the 
controlled variable and the set-point, respectively.  
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Suppose that the desired closed-loop response of 
the diagonal elements in the multi-loop system is 
given by 
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According to the design strategy of the IMC 
controller [1], the desired closed-loop response Ri of 
the ith loop is presented by 
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where Gii+ is the non-minimum part of Gii and chosen 
to be the all pass form; iλ is an adjustable constant 
for system performance and robustness; ni is chosen 
for the IMC controller to be realizable. 
βi is designed to cancel the dominant poles in the 

diagonal process element. 
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Note that iλ is analogous to the closed-loop time 
constant and thus determines the speed of the 
closed-loop response. The multi-loop controller 

)(~ scG  with integral term can be expressed in a 
Maclaurin series as 
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where 0 1,c c cG G ,G  can be considered as the integral, 
proportional, and derivative terms of the multi-loop 
PID controller, respectively. 

As indicated from (5), the impact of proportional 
and derivative terms (i.e., 21

~,~
cc GG ) dominates at 

high frequencies and thus they should be designed 
based on the process characteristics at high 
frequencies. On the other hand, the integral term 0

~
cG  

is dominating at low frequencies and thus needs to be 
designed based on the characteristics at low 
frequencies. 

In the multi-loop system, the characteristic of the 
closed-loop interaction is changed according to 
frequency range. Using this frequency-dependent 
properties of the closed-loop interactions, analytical 
design of the multi-loop PID controller can be largely 
simplified while it still takes the interaction effect 
fully into account as follows [1]:  

At high frequencies, the magnitude of open loop 
gain becomes ( ) ( )cj jω ωG G 1 and thus H(s) can be 

approximated to 
)(~)()(~)())(~)(()( 1 sssssss ccc GGGGGGIH ≈+= −  6) 

It indicates that c0
~G  and  can be designed by 

considering only the diagonal elements in G(s), 
which means the generalized IMC-PID method for 
the SISO system [7] can be applied to the design of 
the proportional and derivative terms in the 
multi-loop PID controller. Therefore, at high 
frequencies, the ideal multi-loop feedback controller 
to give the desired closed-loop response 

c1
~G

)(~ sR is 
given by 
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where  ],...,,[)(~
2211 nnGGGdiags =G

Accordingly, the ideal multi-loop controller of the 
ith loop can be designed by 
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where Gii- is the minimum part of Gii.  

Since Gii+(0)=1, (8) can be rewritten in a Maclaurin 
series with an integral term as 
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where fi(s) = Gci(s)s 
The standard PID control algorithm is given 
by   
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Comparing (9) with (10) gives the analytical 
tuning rules for the proportional gain of the 
multi-loop PI controller as follows: 

  (11) '(0)ci iK f=

At low frequencies, according to the design of the 
integral term 0

~
cG , the interaction effect between the 

control loops can not be neglected. Expansion of G(s) 
in a Maclaurin series gives 
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)()( 32
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where  2/)0(";)0(';)0( 210 GGGGGG ===
By substituting (5) and (12) into (1), one can obtain 
H(s) as 

)()~()( 21
00 sOss c +−= −GGIH  (13) 

Furthermore, the desired closed-loop response 
R~ can also be written in Maclaurin series as 

)()0('~)0(~)(~ 2sOss ++= RRR  (14) 
where IR =)0(~  because  1)0( =+iiG
By comparing the diagonal element of H(s) in (13) 
and in (14) for the first-order s term, one can 
get the analytical tuning rule for the integral time 
constant of the multi-loop PID controller as follows 
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Tuning formulae by (11) and (15) provide an 
important advantage to solve the optimization 
problem for finding the PID parameter values: for a 
given process, all the PID parameters can be 
expressed by a single design parameter iλ and thus 
the dimension of the search space for optimization is 
greatly reduced. 

The lead term by ( 1)i sβ + in (3) can cause an 
excessive overshoot in the set-point response. The 
two degree of freedom structure can overcome this 
problem by designing a set-point filter qi  as  
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3   Ms criterion for the MIMO systems 
Ms tuning is the frequency-domain method which 
relates to the resonant peak Ms. The Ms values are 
related to the resonant peak of the sensitivity function. 
The relative stability and robustness of a stable 
closed-loop system can be suggested by the 
magnitude of Ms. In 1996, Skogestad and 
Postlethwaite [8] employed Ms as a tool for 
measuring system robustness. 

In 1998, Astrom et. al [9] proposed that the 
desirable values of Ms for SISO systems are in the 
range of 1.2 to 2. Ms tuning provides a limit for the 
closed-loop time constant for a model, and it allows 
the optimal controller parameters to be found. 

The sensitivity function in the multi-loop control 
system can be represented by 

- 1
c( ) ( +  ( s ) ( s ) )  s =S I  G G  (17) 

The sensitivity frequency response can be found by 
setting s = jω  in term of ω  and λ as follows 
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The sensitivity function can be expressed by the 
matrix form as 
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The maximum sensitivity Ms is obtained as the 

maximum value of the sensitivity function over 
frequencies 

{ }
λ,ω  0

          

= = maxij ijMs S (jω,λ)
≥

 Ms                                  (20) 

The peak magnitude of the sensitivity function can 
be expressed by the matrix form as 
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The proposed Ms tuning method is aimed to 
improve the performance and robustness of 
closed-loop frequency responses in the multi-loop 
control system by finding an optimal λ .  The 
multi-loop control system can also be made to meet 
the stability bounds and all the multi-loop PID 
parameters can be expressed by a single design 
parameter iλ .This optimization problem in the 
frequency domain is 

λ,ω  0 i
min ( )

s.t.  
ij

ii low
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Ms  Ms   
≥

≥
∑

 (22) 

where Mslow is the lower bound of the diagonal Ms 
and it also can be considered as optimizing value to 
minimize the integral absolute error (IAE). Fig. 2 
shows the effects of  Mslow on the overall performance 
in the OR column [11]. It implies that at small values 
of Mslow, the IAE values are large. However, when 
Mslow increases to high values, the IAE values also 
increase. Our extensive simulation study shows that 
the desirable value of Mslow lies between 1.8 and 2. 
This range of Mslow can be used for the trade-off 
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between sluggish, overshoot, oscillation, and 
minimizing IAE.  

According to (22) it is easy to find the optimal 
value of λ  which makes multi-loop control systems 
stable and robust not only for set-point tracking but 
also for disturbance rejection. 

 
Figure 2. Effects of Mslow on the IAE: OR column. 
 

4 Simulation study 
In the following case studies, we demonstrate our 
tuning rules with 3x3 system from the open literature, 
Ogunnaike and Ray (OR) column, a multi-product 
plant distillation column for separation of a binary 
ethanol-water mixture, was modeled experimentally 
in Ogunnaike et al. [11]. The proposed method is also 
compared with several well-known tuning methods 
such as BLT and DLT tuning methods. 

The transfer function matrix of the OR column is 
given by 
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By using (22), the optimum iλ  values were found 
as 10.07, 8.78, and 2.3 for each loop, respectively. 
Step changes in set-point and disturbance were 
sequentially made in the individual loops.  ni in (3) 
was chosen as 2 for all loops according to the process 
model order. The value of 1.9 was chosen for Mslow.  
All tuning parameters are listed in Table 1. 
The set-point filters can be found as 

1,2,3
1 1 1( ) { , , }

(5.48 1) (3.43 1) (3.39 1)fq s
s s s

=
+ + +

 

Figures 3 and 4 show the closed-loop responses for 
sequential step changes in set-point and disturbance, 
respectively. Sequential step changes of magnitude 1, 
1, and 10 were made to each loop.   

TABLE 1 
Tuning results by the proposed PI method and 

various methods: OR column 
 Proposed BLT DLT 
Kc 1.62, 

-0.32,  
9.43 

1.51, 
-0.29, 
 2.63 

0.61, 
-0.14, 
 0.39 

Iτ  9.32,  
7.27,  
12.40 

16.4,  
4.18, 
6.61 

8.00,  
6.50,  
6.85 

λ  10.07,  
8.78,  
2.3 

- - 

Step changes in set-point 
IAE1 18.15, 

24.2, 
81.48 

32.06, 
70.22, 
149.85 

35.86, 
55.49, 
975.54 

IAE2 3.51, 
15.76, 
24.13 

6.19, 
45.71, 
43.07 

6.99, 
35.74, 
297.52 

IAE3 0.07, 
0.06,  
2.32 

0.12,  
0.15,  
3.59 

0.12,  
0.10,  
27.58 

IAEt 169.68 350.96 1434.96 
Step changes in disturbance 

IAE1 6.06,  
8.22,  
34.37 

10.86, 
11.9, 
90.96 

13.12, 
17.46, 
463.50 

IAE2 2.95,  
22.22, 
 34.39 

5.28, 
60.93, 
94.68 

8.12, 
46.51, 
505.40 

IAE3 0.05,  
0.07,  
1.32 

0.01, 
0.02,  
2.51 

0.08, 
0.08, 
22.83 

IAEt 109.54 277.15 1077.10 
 
IAEi   : IAE for the step change in loop i.  IAEt   : sum 
of each IAEi. 

The BLT method shows high overshoot and 
oscillation in the closed-loop responses while the 
DLT method leads to very sluggish and unbalanced 
ones with large IAE values. 

The proposed method provides fast and balanced 
responses through the illustrated example. The 
superiority of the proposed method is also 
demonstrated by comparison of the IAE values.  
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Figure  3. Closed-loop response to sequential step 
changes in set-point for OR column. 
 
Figure   4. Closed-loop response to sequential step 
changes in disturbance for OR column. 



5   Conclusion 
The tuning of multi-loop PI controller for MIMO 
process is usually a complex problem. In this paper, 
the generalized-IMC approach is used to develop a 
simple but efficient design method for the multi-loop 
PI controller. The proposed method has several clear 
advantages.  

Firstly, the method is straightforward and it can be 
easily implemented in multivariable control systems. 
Secondly, Ms criterion is very suitable for achieving 
good stability and robustness in multi-loop PI control 
systems. Furthermore, it is provided the minimizing 
of IAE values, while other control parameters are 
well-balanced. The simulation results show that the 
proposed method is very effective both set-point 
tracking and disturbance rejection in the multi-loop 
control system.         
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