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Abstract

The Saint-Venant elliptic over-determined problem

in a doubly connected domain is considered. The

use of Weinberger functional leads us to conclude

that the domain is in effect an N -ball. The tool

of this investigation are best maximum principles

and Rellich’s identity.
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1 Introduction

An alternative technique for determining the con-

figuration of domains in the class of elliptic prob-

lems when an over-specification on the boundary

of the domain is prescribed is to re-formulate the

problem in an equivalent integral form, where the

most important ingredients in partial differential

equations, maximum principles, are not used. In-

stead, the integral dual is then used in order to

deduce that the domain in consideration is an N -

ball. For an account on these topics we refer the

reader to [1,2,3,5,6,8,10,12].

In their famous paper [6], L. E. Payne and P.

W. Schaeffer investigated this new approach with-

out using maximum principles. Among a variety

of class of over-determined problems considered in

[6] involving Green’s functions as well as classical

boundary value problems, they showed the follow-

ing two theorems taking into consideration the fol-

lowing Saint-Venant problem.

Let u be a classical solution of the following

Saint-Venant problem

∆ u = −1 in Ω, u = 0 on ∂Ω, (1.1)

∂u

∂n
= −c, c = constant on ∂Ω, (1.2)

where Ω is a simply connected regular, bounded

domain of IRN , N ≥ 2 and ∂u
∂n is the exterior nor-

mal derivative of u on the boundary ∂Ω which is
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assumed to be sufficiently regular. We cite the two

statements investigated in [6] without proof.

Theorem 1.1 Let u ∈ C2(Ω) ∩ C1(Ω̄). Then the

following statements are equivalent

(i) u satisfies (1.1), (1.2),

(ii)
∫

Ω

h dx = c

∫
∂Ω

h ds
(1.3)

for all functions h harmonic in Ω.

Theorem 1.2 If (1.3) holds, then Ω is an N -ball.

The aim of this note is to extend this result for

a doubly connected domain. In fact, we assume

that u is a classical solution of the following Saint-

Venant problem and Ω0 and Ω1 are two simply con-

nected C2 domains such that Ω := Ω0 \ Ω̄1. Here

and in the following n(x) denotes always the unit

inner normal with respect to Ω. We consider u a

C2 solution of

∆ u = −1 in Ω, (1.4)

u = 0 on ∂Ω0, (1.5)
∂u

∂n
= 0 on ∂Ω1, (1.6)

∂u

∂n
= −c2 on ∂Ω0, (1.7)

u = b2 on ∂Ω1. (1.8)

The next theorem establishes an equivalence be-

tween two assertions: the original problem and the

dual problem expressed as integral identity involv-

ing harmonic functions. This auxiliary result is

formulated as follows

Theorem 1.3 Let u ∈ C2(Ω) ∩ C1(Ω̄). Then the

following statements are equivalent

(i) u satisfies (1.4)− (1.8),

(ii)
∫

Ω

h dx = c2

∫
∂Ω0

h ds− b2

∫
∂Ω1

∂h

∂n
ds

(1.9)

for all functions h harmonic in Ω, where

c2 :=
|Ω|
|∂Ω0|

and

b2 :=
|Ω|
|∂Ω1|

.

For the proof of Theorem 1.3, we start with the

second part by showing that (ii) implies (i). Then

for any harmonic function h, we have∫
∂Ω0

h{∂u

∂n
+

|Ω|
|∂Ω0|

}d s+
∫

∂Ω1

∂h

∂n
{ |Ω|
|∂Ω1|

−u}d s = 0.

(1.10)

It is worth noting that the differential integral

(1.10) is valid for any function h harmonic of class

C2 on Ω̄, and therefore h must be a solution of the

following elliptic problem

∆ h = 0 in Ω, (1.11)

h =
∂u

∂n
+

|Ω|
|∂Ω0|

on ∂Ω0

∂h

∂n
=

|Ω|
|∂Ω1|

− u on ∂Ω1.

Making substitution of the value h and ∂h
∂n appear-

ing in (1.11) into (1.10) conduct us to the following

boundary conditions

∂u

∂n
= − |Ω|

|∂Ω0|
= −c2 on ∂Ω0, (1.12)

and

u =
|Ω|
|∂Ω1|

= b2 on ∂Ω1. (1.13)

Thus in view of (1.12) − (1.13), u must satisfy

the above elliptic over-determined problem (1.4)−
(1.8).

Now for the reverse implication, the first part, we

suppose that (i) holds. Applying the second clas-

sical formula of Green and taking in account the

2

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          83



boundary conditions (1.5)−(1.8) we get the desired

integral identity (ii) which complete the proof.

The following theorem states that the only con-

figuration of the doubly connected domain in con-

sideration are N -concentric spheres. This result

is very well known in view of other approach see

[5,12] where the used technics are moving plane

method [9] and maximum principles of E. Hopf

[3,4,7,10] jointly with P -functions [11]. Now we

are able to show the main result of this paper for-

mulated in the theorem under below, using duality

theorems which extends the result (Theorem 1.2)

investigated in [6].

Theorem 1.4 If (1.9) holds with c2 := |Ω|
|∂Ω0| and

b2 := |Ω|
|∂Ω1| then Ω is a concentric sphere annulus

provided that

0 < u < b2.

In order to prove Theorem 1.4, we want to get

some integral identity which leads us able to de-

duce that the only possibility for the combination

Φ (that will be defined later) is to be constant. This

is due to the application of several Green’theorem

to the Weinberger functional r ∂u
∂r . This investi-

gation relies heavily on the following observation

already known in [11] for a single elliptic equation

(Saint-Venant problem) in a simply connected do-

main. The tool of this investigation are Best max-

imum principles and Rellich’identity.

Let us for completeness sake re-write it as

∆ (r
∂u

∂r
) = r

∂∆ u

∂r
+ 2∆ u (1.14)

= −2,

Now multiplying (1.14) by −u and using Green’s

theorem, we get∫
Ω

(−u∆ (r
∂u

∂r
) + r

∂u

∂r
∆ u) dx =

∫
Ω

(2u− r
∂u

∂r
) dx (1.15)

Next, we express the last term in (1.15) from the

right in light of classical formula of Green, we ob-

tain ∫
Ω

r
∂u

∂r
dx =

∫
Ω

∇ (
r2

2
)∇ (u) dx (1.16)

= −N

∫
Ω

u dx,

from one hand. From an other hand, in view of

second classical formula of Green, the right-hand

side of (1.15) takes the form∫
Ω

(−u∆ (r
∂u

∂r
) + r

∂ u

∂r
∆ u) dx = (1.17)∫

∂Ω

(−u
∂

∂n
(r

∂u

∂r
) + r

∂u

∂r

∂u

∂n
) ds

=∫
∂Ω0

c4r
∂r

∂n
ds− {

∫
∂Ω1

b2 ∂

∂n
(r

∂u

∂r
) ds}

=∫
∂Ω0

c4r
∂r

∂n
ds− {

∫
∂Ω1

b2[
∂

∂n
(r

∂r

∂n
)
∂u

∂n

+

r
∂r

∂n
(
∂2u

∂n2
)] ds}.

Now we need to compute explicitly the second di-

rectional derivative of r2

2

∂

∂n
(r

∂r

∂n
) =

∂2

∂n2
(
r2

2
) (1.18)

= ninj(
r2

2
),ij

= nini = 1,

where ni denotes a unit vector normal to the

boundary.

Inserting (1.18) into (1.17) we obtain∫
Ω

(−u∆ (r
∂u

∂r
) + r

∂ u

∂r
∆ u) dx =∫

∂Ω0

c4r
∂r

∂n
ds− (1.19)

{
∫

∂Ω1

b2[
∂

∂n
(r

∂r

∂n
)
∂u

∂n
+ r

∂r

∂n
(
∂2u

∂n2
)] ds}.
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Therefore combining together (1.15) − (1.16), we

obtain

(N + 2)
∫

Ω

u dx = Nc4|Ω0|+ Nb2|Ω1|. (1.20)

From which we deduce that

Nc4|Ω0|+ Nb2|Ω1| − (N + 2)
∫

Ω

u dx = 0. (1.21)

Now with a straightforward calculation one sees

that the following combination

Φ := |∇u|2 +
2
N

u, (1.22)

where F (u) :=
∫ u

0
f(s) ds, satisfies ∆ Φ ≥ 0, and

therefore takes its maximum value on the boundary

∂Ω unless Φ is constant. The next aim is to show

that Φ is harmonic in Ω. Since Φ is sub-harmonic

in Ω, it is sufficient to prove that ∆Φ ≤ 0. To do

so, we use a new argument, namely dual integrals

investigated in [6]. Indeed, let u be a solution of

(1.4)−(1.8) and use classical formula of Green, one

get

N

∫
Ω

u∆ Φ dx = −N

∫
Ω

Φ dx + Nc6|Γ0| (1.23)

= −(N + 2)
∫

Ω

u dx + Nc6|Γ0|

= −(N + 2)
∫

Ω

u dx + Nc4|Ω0|.

Combining (1.20) and (1.24), we are then led to∫
Ω

u∆ Φ dx = −Nb2|Ω1| < 0. (1.24)

Since u is positive we get ∆Φ < 0 in Ω. So Φ is

harmonic and following the final part of Weinberger

we conclude that Ω is an N -ball and u is radially

symmetric.
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