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Abstract: - The object of this paper is the nonlinear systems that include a relay with a hysteresis loop 
characteristic property. The linear parts of systems that are taken into consideration are characterized by 
an order two transfer function, with two time constants. The paper shows a method to evaluate the period 
of the limit stabile cycles, which are proper for these nonlinear systems. 
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1. Introduction 
The systems that include linear and nonlinear 
parts, in assembly, are nonlinear systems. These 
systems are realized in order to maintain, for any 
parameters, a specified values or a values in a 
specified band. The figure 1 presents a typical 
structure for these nonlinear systems. 
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Fig.1. Nonlinear system destined to control of 

one parameter 

The previous schema presents a structure 
that uses the feedback principle. The linear 
components of system are: the fixed part of the 
controlled process, the actuators and the loop’s 
transducer, described form the transfer functions 

)(sH FP , )(sH A  and )(sHT . Usually, the 
transducer can be considerate that a pure 
proportional element. The error signal, ε , is the 
difference between the input, r , and the image 

 (via transducers) of output, . Based on the 
error signal, a nonlinear device, described by a 
nonlinear function, , generates the command 

. The command  u  is applied to actuators. The 
actuator output  is the input for the fixed part 
of the controlled process.  
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The nonlinear component included in the 
systems can induce a punctual instability. 
Globally, the response of theses systems to 
constant inputs bring to an oscillatory stable 
state. The characteristics of such state, in many 
situations, can be analytically obtained, and in 
other situations, only by simulations. Sometimes, 
the presented nonlinear systems can have a 
punctually stationary state.  

This paper proposes an algorithm to calculus 
the period of oscillatory stable state, for the 
nonlinear systems, that include a hysteresis loop 
relay and the linear components is described that 
a two order system, without integrator elements. 
The case of linear parts described by a two order 
transfer function, with on or two integrators are 
presented in [1]. 

 
 

2. The study model 
In the following, we consider a nonlinear 

system, which has identically structure that 
figure 1.  

Additionally, is considered that the 
nonlinear component is a hysteresis loop relay, 
with 0u±  the level of output. The hysteresis 
band is centered in 0 and  is the bandwidth. 
The transducer is pure proportional, and 

02ε

TK  is 
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its gain. The actuators and the plant of process 
are described by order one transfer function: 
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and the time constants achieved the condition: 
FA TT <<0 .  (2) 

Using the previous hypotheses, the structure 
presented in the figure 1 can be presented such 
as the figure 2. 
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Fig. 2. The nonlinear study model 

In order to simplify the next considerations, 
in the following we’ll consider that the system 
output coincides with the transducer output. The 
shape of  and y Ty  evolutions are identically, 
but the scale differ by the transducers gain. 

If the system output is considered the 
transducer output, the structure can be presented 
more compact, like in the figure 3. 
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Fig. 3. The compacted study model  

The linear parts of previous schema is an 
order two system, with two negatives poles, and 
the gain of loop, K, is:  

TFA KKKuK ⋅⋅⋅= 0 .      (3) 
In case a constant value of input, the system 

output Ty  tends to one static work points, if the 
following condition is achieved: 

K>ε0 .       (4) 
In this case, the hysteresis bandwidth is so 

large, or the gain is so small. The stationary 
value of system output will be: 

Kyst ±= .                 (5) 

In the previous relation, the sign of  is 
identically with the sign of initial value of 

sty

Ty . 
 
 

3. The oscillatory stable regime study  
In the following, we’ll consider that the loop 
gain is so great that achieved the condition: 

K<ε0 .     (6) 
For the system linear parts, we’ll use an 

equivalent model, which is a parallel connection, 
showed in the figure 4.  
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Fig. 4. The equivalent parallel model  
The gains of the two order one elements of 

parallel connection are positives and satisfied the 
relations: 
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Observation: if the linear parts has a zero 
(this case will not treated in this paper): 

( ) ( )11 +⋅⋅+⋅
+⋅

FA TsTs
KAs ,     (8) 

then it can be represented like a parallel 
connection of two elements, with the gains: 
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For the two elements of the equivalent 
connection, we’ll associate the state variables  1y
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and . Using the previous notations, the system 
output will be: 

2y

21 yyyT −=          (10) 
For a constant relay output, is possible to 

obtain analytical expressions for  and : 1y 2y
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where  and  are the initial values of  
and . 

10y 20y 1y

2y
If the relay output is constant, is obvious 

those, indifferently on the initial values,  and 
 tend to values: 
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In the plane of  and  variables, which 
is the phase’s plane, the state trajectory of the 
equivalent system tend to the point , 
which is an accumulation point. Using the 
relation (11), we can obtain an analytical 
equation of state trajectory, in the phase-plane: 
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The relation (13) is an equation of a power 
curve. Indifferently of the initial conditions or of 
the value of ratio 1/ >= AF TTa , the state 
trajectory will tend to the accumulation point.  

If the parameters of the initial system 
components are known, is possible to obtain a 
curve family, who include the state trajectory. 
The aspect of these curve family is present in the 
next figure. 
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Fig. 5. The state trajectory family  

in the phase-plane 

In case of null value of reference, the 
commutation lines, in the phase-plane are 
described trough the equations: 

021 )()( ε=− tyty .  (14) 
When the relay output are negative, the 

family of curves that include the trajectory has 
same graphical shape, but the accumulation point 
will be other, ),( 21 KK −− . The two curves 
families and the commutation lines are presented 
in the next figure.  
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Fig. 6. The two trajectories curves families and 

the commutation lines 
In the previous figure, we can observe:  

- if the accumulation points are included in the 
band delimited by the two commutation lines, 
according to the initial state, the system output 
tend to one or other of theses points. In this case 
the condition (4) is achieved; 
- if the accumulation points aren’t included in 
the band delimited by the two commutation 
lines, the condition (4) isn’t achieved. The 
accumulation points are included in the domains 
that correspond to a relay output with an 
opposite sign.  

If we consider the typical shape of 
trajectories, is evident that the system output 
tends to a limit stable cycle.  
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Fig. 7. The limit stable cycle to a null reference  
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The limit stable cycle is symmetric relative 
to the coordinate system origin. The extreme 
points of the cycle are positioned to the two 
commutation lines and the real output of system 
will be included in an interval: 

[ ]TT KKty /,/)( 00 εε−∈ .   (15) 
If  is the maximum value of state 

variable , this value satisfied the relation: 
sty1
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The period of limit stable cycle, T , can be 
obtained using the relation: 

st
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In case of one no null constant reference, , 
we must count that the commutation lines are 
placed in other position, and its equations will 
be: 

0r

ε=−− 021 ryy .  (18) 
Because the trajectories curve families and 

the accumulation points aren’t modified, the 
limit stable cycle are displaced in the variable  
and  plane, like in the next figure. 
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Fig. 8. The limit stable cycle in case a no null 

reference 
The output of system will oscillate in a band, 

centered to the reference value: 
 .    (19) [ ]TT KrKrty /,/)( 0000 ε+ε−∈

The limit stable cycle will be delimited in 
the phase’s plane by two extreme points, 
positioned to the commutations lines: 

( )0011 , ε−−++ ryy stst , 

( )0011 , ε+−−− ryy stst . 

The values  and  will satisfied the 
relations: 
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and: 
AF TT
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The solving of last two equations system 
permits to obtain the extremes point of limit 
stable cycle. Using the obtained values  and 

, we can calculate the period, such as: 
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This relations, exactly, is difficult to applied. 
The previous considerations are true if the 

accumulation points are positioned in the phase’s 
plane, relative to the commutation lines like in 
figure 8. If the reference values  is too high, 
the state trajectory tends asymptotically to an 
accumulation point. The limit level of reference 
module is: 

0r

  
TK

Kr 0
lim0

ε−
= .       (23) 

If the reference absolute value exceeds the 
limit value , the system not tends to an 
oscillatory stable regime. 

lim0r

   
 
4. Example  

We’ll study the case of a system 
characterized by the next transfer functions for 
the linear parts: 

13
5)(
+

=
s

sH A ,  

15
1)(
+

=
s

sH F ,  

10=TK . 
We consider for the relay the next values: 

10 =ε ,  
20 =u . 
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According the presented relations, will be 
obtained: 

010010152 ε>=⋅⋅⋅=K , 
and the limit of the reference absolute values is: 

9.9
10

1100
lim0 =

−
=r . 

If the reference satisfied the condition: 
lim00lim0 rrr <<−  

the values of system output will be in the band: 
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The gains of two linear components of 
equivalent connections will be:  
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The equation (16) has the next solution: 
536.471 =sty  

and using (17), we obtain the oscillations period 
for a null reference: 

)(85.3
536.47250
536.47250ln520 sT =

−
+

⋅⋅= . 

From simulation, it was obtained the values 
of oscillations period for system output, using 
non null values for references. These values are 
presented in the next table. 

0r  0 0.99 1.98 2.97 3.96 4.95
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0r  5.94 6.93 7.91 8.91 9.5 9.8
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0.96

  
0.99

T  3.86 3.86 3.86 3.87 3.88 3.89

0

0100
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0.26 

 
0.26 

 
0.26 

 
0.52 

 
0.78

 
1.04

The results obtained by simulation are 
practically invariable. The variations of the limit 
stable cycle periods relative to the result of 
calculus relation (17) are insignificant. 

5. Conclusions 
For the nonlinear systems that can be 

reshaped in an equivalent structure, similarly of 
those which presented in the figure 2, the paper 
offers the possibility to calculate the elements of 
limit stable cycle. The relation (17) can be used 
to evaluate the period of the limit stable cycle, 
not only in the null reference case, because, the 
errors induced in case of non null reference are 
reduced. 
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